Traditional Knowledge Base For Drug Discovery

EU – India Partnering Event 05.11.2009

G. N. Qazi, Ph. D Vice Chancellor, Hamdard University, Hamdard Nagar, New Delhi

Strength of ISM in India

Particulars	Modern System	Indian System
Practitioners	2,40,000	5,64,476
Indoor Hospitals	5,767	2,607
Graduate medical Schools	110	284
Manufacturing Units	16,000	9,000
Turnover	8 billion US\$	1billion US\$

Recent Indian Initiatives

- TKDL (collection of millions of documents)
- GTP (Integrative Approach : Traditional doctors + Modern practitioners + Contemporary Scientists
- Premier Product Certification (QCI)
- New Drug Delivery Approach for TM
- Reverse Pharmacology approach for clinical validation of modified but conceptually traditional formulations
- ICMR registry for clinical trials of TM and new botanicals

Quest of the time Products that are:

- Alternate/Complimentary
- Adjunct/Adjuvant
- Better (Validated Faster)
- Safer
- Affordable

Standardization & Discovery Platform

Characterization of Plant Product (Drug Substance)

- Chemical classes of the mixture
 - Polar, Medium Polar and Non-polar Compounds
- Isolation of Individual chemical constituents in each class
 - fractionation
 - Prep. HPLC
- Analytical tools
 - GC, LC, HPTLC, LC-MS, UPLC-MS, Hyphenated LC-NMR- MS
- in vitro and in vivo biological activity assays

Lot-to-Lot Consistency

- Equivalence between material used for clinical trials and product for the market
- Marker based equivalence before and after manufacturing process
 - Physical Characteristics
 - Chemical finger print
 - Bio-assay
 - Formulation

Critical Elements to Assure Quality and Consistency

- Strict quality controls for (Chemistry and manufacture) of each plant raw material
- In-process controls
- Sound process validation
- Appropriate and adequate testing of final product and dosage form using validated test methods

Withania somnifera

AGB002

- a) a flowering plant
- b) flower (close up)
- c) flower and fruiting calyx
- d) inflated fruiting calyx (close up)
- e) plant in fruiting
- f) ripe berries
- g) seed

Withania somnifera A002 root extract

- Sample is applied in duplicate
- Mobile phase: Chloroform: Methanol(19:1)
- Plate is derivatized by Vanillin –boric acid reagent at 120°c for 10 minutes
- AGR1 PT/070806
- AGR2 PC/WS/RRL/06
- AGR3 Zandu Pharma
- AGR4 Ixoreal Biomedical Pvt.Ltd.
- AGR5 Om Pharma
- AGR6 Udaipur, Rajasthan

HPLC-UV(DAD) Chromatogram (237nm) of withanolides, Glycowithanolides in gradient conditions.

CHEMICAL ANALYSIS OF ASHWAGANDHA SAMPLES ON THE BASESOF WITHANOLIDES (FIVE) AND GLYCOWITHANOLIDES (TWO)

Sample code	WS-1	WS-2	WS-3	WSC	WSCO	WSG-3	WSG-P
AGB002L	_	0.043	<u>0.164</u>	0.026	0.046	0.016	0.003
AGB002R	0.013	<u>0.013</u>	0.008	0.007	-	0.008	-
AGB009L	0.025	0.126	0.217	0.013	0.028	0.050	0.025
AGB009R	0.117	0.005	0.007	0.009	0.001	0.010	0.012
AGB015L	0.005	-	0.567	-	0.020	0.059	0.021
AGB015R	0.015	-	0.044	0.004	0.001	0.042	0.017
AGB025L	-	-	0.174	0.002	-	0.012	-
AGB025R	0.019	-	0.007	-	-	0.003	0.017
AGB030L	0.009	0.127	0.248	0.125	0.147	0.084	0.007
AGB030R	0.029	0.011	0.002	0.002	-	-	0.006

AGB002 (Root Extract, 50% alcoholic)

Withanolide-A (WS-1)

Chemical composition of AGB002R

Marker	(g/100g)
a. Unidentified withanolide (WSL-2)	0.076±0.005
b. Withanoside-IV (WSG-3)	0.079 ± 0.005
c. Physagulin (WSGP)	0.103 ± 0.003
d. 27-hydroxy withanone (WSCO)	0.022±0.002
e. Withanoside-VI (WSG-3A)	0.024±0.003
f. Withaferin-A (WS-3)	0.017±0.004
g. 12-deoxywithastramonolide(WS-12I	0) 0.023±0.003
h. Withastramonolide (WSC)	0.017±0.002
i Withanolide-D (WSD)	ND
j. Withanolide-A (WS-1)	1.340±0.006
k. Withanone (WS-2)	0.315±0.005

Acceptance / Rejection Criterion For some of the selected Ayurvedic plants Based on estimation of active constituents

Sr. No.	Plant name	Extractive Value 50 % Aq. Alc. Extract	Markers	Acceptable range of Markers (in plant material based on HPLC analysis of 50 % Alc. Ext.)
1	Ashwagandha Withania sominifera, Roots)	16.5 - 18 %	Withaferin A Withanolide A Withanone	0.005 - 0.020 % 0.020 - 0.101 % 0.002 - 0.010 %
2	Amalaki (<i>Phyllanthus</i> <i>emblica</i> , Fruit coat)	30.35 %	Gallic acid Ellagic acid	1.05 - 2.02 % 0.75 - 1.60 %
3	Haldi (<i>Curcuma longa</i> Rhizomes)	10.0 – 12%	Curcumin Demethoxy-curcumin Bisdemethoxy- curcumin	0.40 - 1.52 % 0.02 - 0.36 % 0.05 - 0.35 %
4	Brahmi (<i>Bacopa moneri</i> Whole herb)	12 – 14 %	Bacoside A ₂ Bacoside A ₃	0.42 – 0.85 %

Converting traditional knowledge into evidence based medicines

Chemical Standardization & the mechanism of action of a therapeutics formulation

Based on Withania somnifera (Ashwagandha)

Study Design

Cancer cell cytotoxicity

In vitro
Detailed
Mechanism of action

Tumor Immunology

Withania somnifera, Biological Mechanism and therapeutic application

- ❖Potential Th1 immune stimulator
- ❖ Withanolide A, identified
- Reduced microbial load mTB infected mice models
- Currently under patient trials

- **❖**Potential anticancer agent
- *Withaferin A, Identified
- ❖Reduced tumor growth in mice tumor models
- Chemically standardized herbal formulation under clinical trials

Isolation, Identification and Mechanism of action of Withaferin A (WA) in cancer cell death

Leaf Extract (1:1, Aqu:Alcoh)

	· · · · · · · · · · · · · · · · · · ·		
Markers	X ^{(-)%}	IC ₅₀	
Withanolide-A	(WS-1)	0.060	>10µM
Withanone	(WS-2)	1.282	>10µM
Withaferin-A	(WS-3)	1.910	0.5μΜ
Withastramonolide	(WSC)	0.406	>10µM
27-hydroxy withanone	(WSCO)	0.079	>10µM
Withanolide-D	(WSD)	0.073	>10µM
Withanoside-IV	(WSG-3)	0.671	>10µM
Withanoside-VI	(WSG-3A)	0.213	>10µM
Physagulin	(WSGP)	0.204	>10µM
12-deoxywithastramonolide	(WS-12D)	0.019	>10µM
Unidentified withanolide	(WSL-2)	3.253	>10µM

WA induce oxidative burst in cancer cells

Oxidative stress mediated cell death by WA is rescued by NAC

HL-60 Cell Morphology PC3

Chemical Standardization of WSF

Chemical composition of the formulation, % dry
weight of the extract

Markers used for chemoprofiling	g/100g	S.D.
Withanolide A (WS – 1)	0.689	0.006
Withanone (WS – 2)	0.815	0.006
Withaferin-A (WS – 3)	0.608	0.005
Withastramonolide (WSC)	0.333	0.005
27-Hydroxy withanone (WSCO)	0.032	0.003
Withanolide-D (WSD)	0.041	0.003
Withanoside-IV (WSG-3)	0.267	0.004
Withanoside –VI (WSG- 3A)	0.075	0.003
Physagulin-D (WSGP)	0.098	0.004
12-Deoxywithastramonolide (WS-12D)	0.011	0.001

In vitro cytotoxicity of WSF against a panel of human cancer cell lines

WSF µg/ml		Colo	n			Liver	Lung		Neuroblas -toma	CNS	Prosta	nte
	HCT- 15	SW- 620	502 713	COL O-205	HT- 29	Hep- G2	HOP -62	A- 549	IMR-32	SK- N-SH	DU- 145	PC-3
1		36	0	6	8	61	6	7	29	37	3	5
3		68	0	9	9	77	10	10	63	54	11	21
10	81	80	0	22	34	91	35	38	69	87	38	44
30	97	92	69	36	56	91	56	77	90	94	80	87
100	100	92	88	96	90	100	77	85	99	95	99	99

WSF as chemo-immunotherapeutic agent for the treatment of cancer: Multi target approach

Cancer cell cytotoxicity

Apoptosis, Autophagy

CD4, CD8, Th1 cytokines, CD80, CD86, CD40, CD40L, NK

Chemotherapy

Immunotherapy

Schematic representation of mechanism of apoptosis induced by WSF in HL-60 cells

Mitochondrial Pathway

Receptor Mediated Pathway

Execution

WSF inhibits tumor growth in mice with simultaneous activation of tumor reactive immunity

WSF	Dose-mg/kg (i,p)	Tumor growth inhibition (%)				
<u>Eh</u>	rlich Ascitic Tu	<u>ımor (solid)</u>				
Control	-					
WSF	100	41				
5FU	22	62				
	Sarcoma 180 (Solid)					
Control	-					
WSF	150	52				
5FU	22	51				
Ehrlich A	scitic Carcino	ma (suspension)				
Control	•					
WSF	150	76				
WSF	350 (oral)	61				
5FU	22	95%				

Tumor reactive Immune activation by WSF in Tumor bearing Mice

Comi

100

200

IPR:

A synergistic non-toxic herbal formulation extracted from Withania Somnifera useful for anti-cancer and Th1-dominant immune up regulating activities. Qazi, G.N.; Singh, Jaswant; Malik, Fayaz; et al., [0202NF2006/IN Dt 06/09/2006; 1321DEL 2007 Dt. 19/06/2007]

Publication:

European Journal of Cancer (2009) 45(8):1494-509. Fayaz Malik, et al., Immune modulation and apoptosis induction: Two sides of anti tumoral activity of a standardized herbal formulation of Withania somnifera

Publications

Authors	Title of the paper	Journal
Fayaz Malik*Sheema Khan, Jaswant singh	Molecular insight into the immune up-regulatory properties of the leaf extract of Ashwagandha and identification of Th1 immunostimulatory chemical entity	Vaccine (2009) In press
Shashi Bhushan, <u>Fayaz</u> <u>Malik</u> Ajay Kumar, e Jaswant singh t al.	Activation of p53/p21/PUMA alliance and disruption of PI-3/Akt in multimodal targeting of apoptotic signaling cascades in cervical cancer cells by a pentacyclic triterpenediol from <i>Boswellia serrata</i>	Molecular Carcinogenesis (2009) (In press)
	Immune modulation and apoptosis induction: Two sides of anti tumoral activity of a standardized herbal formulation of Withania somnifera	European Journal of Cancer (2009) 45(8):1494-509.
Kumar, Shashi Bhushan, Sheema Khan, Jaswant Singh	Reactive oxygen species generation and mitochondrial dysfunction in the apoptotic cell death of human myeloid leukemia HL-60 cells by a dietary compound withaferin A with concomitant protection by N-acetyl cysteine	Apoptosis (2007) 12:2115–2133
Fayaz Malik, Jaswant Singh ,Anamika Khajuria , Krishan A. Suri et al.,	A standardized root extract of <i>Withania somnifera</i> and its major constituent withanolide-A elicit humoral and cell-mediated immune responses by up regulation of Th1-dominant polarization in BALB/c mice.	Life sciences (2007) 80:1525-1538
	A triterpenediol from <i>Boswellia serrata</i> induces apoptosis through both the intrinsic and extrinsic apoptotic pathways in human leukemia HL-60 cells	Apoptosis (2007) 12:1911–1926
	An essential oil and its major constituent isointermedeol induce apoptosis by increased expression of mitochondrial cytochrome c and apical death receptors in human leukaemia HL-60 cells	Chemico Biological Interactions (2008) 171(3):332-347

Publications

Authors	Title of the paper	Journal
Anamika Khajuria, Amit	A new vaccine adjuvant (BOS 2000) a potent	<i>Vaccine</i> (2007)
	enhancer mixed Th1/Th2 immune responses in mice	25: 4586–4594
Surjeet Singh, G Qazi	immunized with HBsAg.	
Anamika Khajuria, Amit		<i>Vaccine</i> (2007)
Gupta, Surjeet Singh,	KLJ-NE-299A: A new plant based vaccine	25: 2706-2715
Fayaz Malik, Jaswant	adjuvant.	25.2700 2715
Singh, G Qazi	U .	
Anamika Khajuria, Amit	Immunomodulatory activity of biopolymeric	Phototherapy
Gupta, <u>Fayaz Malik</u> ,	fraction BOS 2000 from Boswellia serrata	Research (2008)
Jaswant Singh, G Qazi		3:340-348.
Fayaz Malik, Jaswant	Multiple therapeutic target based novel herbal	European Journal of
Singh, A Bhatia and G	formulation with anticancer and	Cancer, Supplements
Qazi	immunostimulatory activities (Abstract)	(2007) Vol.5(4) pg. 89

Abstracts

	A Novel standardized plant based formulation bearing	EMBO work shop at Zaragoza
Fayaz Malik, et al.	anticancer and Th1 immune up regulatory properties: Promising cancer therapeutics	(2008).
Fayaz Malik, etal.	Withanolide induces apoptosis in HL-60 through mitochondrial dysfunction, caspase activation and NFk-B suppression	15th ECDO at SLOVENIA 2007
Fayaz Malik, et al.	A standardized extract of Ashwaghandha induce apoptosis in HL-60 cells through ROS generation and stimulate Th1-response in mice	14th ECDO at ITALY 2006
Fayaz Malik, et al.,	Withaferin A Induced Oxidative Stress Requires the Intrinsic Pathway of Apoptosis in the Death of Human Myeloid Leukemia HL-60 cells, and Protection by N-acetyl Cysteine	

Patents

- **1.A Plant based vaccine adjuvant**. A. Khajuria, A. Gupta, S.Singh, <u>F. Malik</u>, Jaswant Singh, KL Bedi, KA Suri, NK Satti, OP Suri, GN Qazi, VK Srinivas, Gopinathan, K Ella. **EP 1 837 027 A1**
- **2.Induction of apoptosis in cancer cells by a natural product from** *Boswellia* species for its usefulness as anti-cancer agent. G.N.Qazi,S.C.Taneja, Jaswant Singh, A.K. Saxena, V.K.Sethi, D.M.Mondhe, B.K.Kapahi, S.Bhushan, S.S.Andotra, Samar.Singh, B.Shah, S.Singh, H.C.Pal, **F. Malik**, A.Kumar, M. Sharma. [0151NF2006 Dt.31/05/2006] (0570 DEL2007 Dt. 16/03/07)
- **3.Semi-synthetic sesquiterpene lactone parthenin compound useful for anticancer activity.** Qazi, Ghulam Nabi, Taneja Subash Chandra.; Singh, Jaswant; Saxena Ajit Kumar; Sethi Vijay Kumar; Shah Bhahwal Ali, Kumar Ajay, Andotra Samar Singh, **Malik, Fayaz**; Muthiah Shanmugavel, Agarwal, Satyam Kumar [(0207NF-2006/IN Dt. 11/09/2006; 0839 DEL2008 Dt. 31/03/2008)]
- **4.Semi-synthetic sesquiterpene lactone parthenin compound useful for cytotoxicity against cancer cell lines and anti-cancer activity.** Qazi, Ghulam Nabi, Taneja Subash Chandra.; Singh, Jaswant; Saxena Ajit Kumar; Sethi Vijay Kumar; Shah Bhahwal Ali, Kumar Ajay, Andotra Samar Singh, **Malik, Fayaz**; Muthiah Shanmugavel, Agarwal, Satyam Kumar. [(0062NF2008/IN Dt. 24/03/2008; 0840 DEL2008 Dt. 31/03/2008)]
- **5.In Vitro and In Vivo anti-cancer activity of semi-synthetic compounds.** Qazi, G.N.; Taneja, S.C.; Singh, Jaswant; Saxena, A.K.; Sethi, V.K.; Shah, B.A.; Kapahi, B.K.; Andotra, S.S.; Kumar, Ajay; Bhushan, Shashi; **Malik, Fayaz**; Mondhe, D.M.; Muthiah, Shanmugavel; Singh, Surjeet; Verma, Monika and Singh, Shashank Kumar. [0201 NF 2006 Dt. 01/09/2006; 0606 DEL2008 Dt. 11/03/2008]
- **6.A** synergistic non-toxic herbal formulation extracted from *Withania Somnifera* useful for anti-cancer and Th1-dominant immune up regulating activities. Qazi, G.N.; Singh, Jaswant; <u>Malik, Fayaz</u>; Saxena, A.K.; Suri, K.A., Satti, N.K.; Kumar, Arun; Kumar, Ajay; Bhushan, S.; Khan, I.; Mondhe, D.M.; Shanmugavel, M.; Chandra, H.; Gupta, A.; Kumar, M.; Sharma, S. and Singh, S. [0202NF2006/IN Dt 06/09/2006; 1321DEL 2007 Dt. 19/06/2007]

Thanks