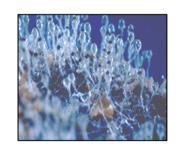


Naveen Arora, Ph.D.

Allergy and Immunology Section Institute of Genomics and Integrative Biology (CSIR) Mall Road, Delhi 110007, INDIA

Email: naveen@igib.res.in

5th November 2009


(EU-India S & T Cooperation Days)

Allergy is a hypersensitivity reaction initiated by immunologic mechanisms caused by specific substances called <u>allergens</u>

Foods

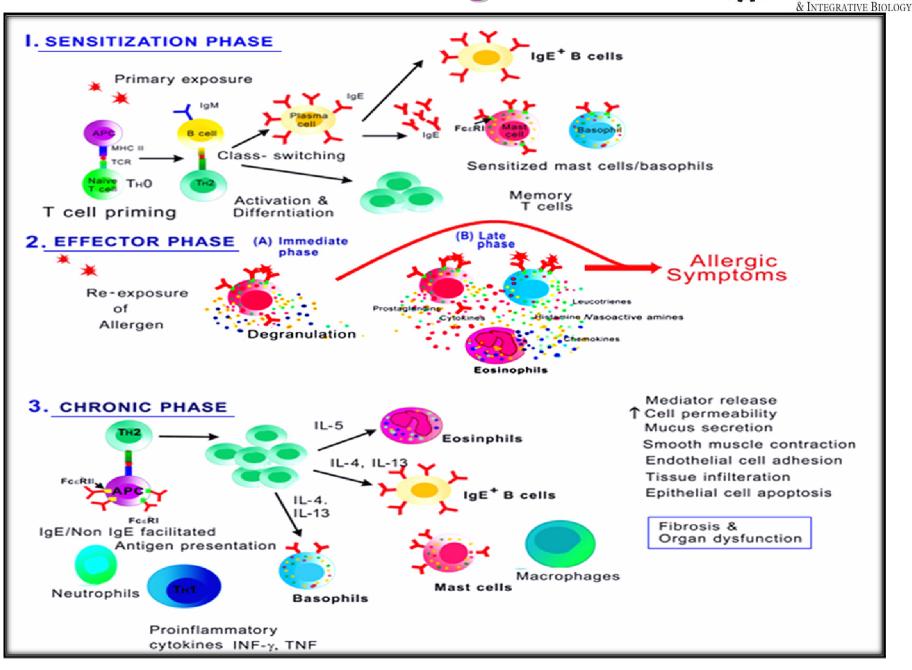
Allergy

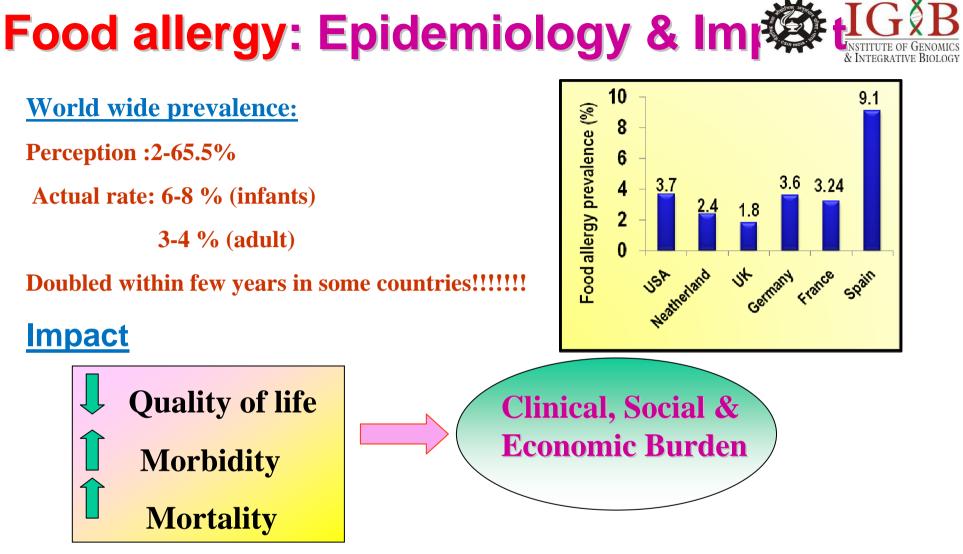
Fungi

Insects

Pollens

Dust mites


What is food allergy?

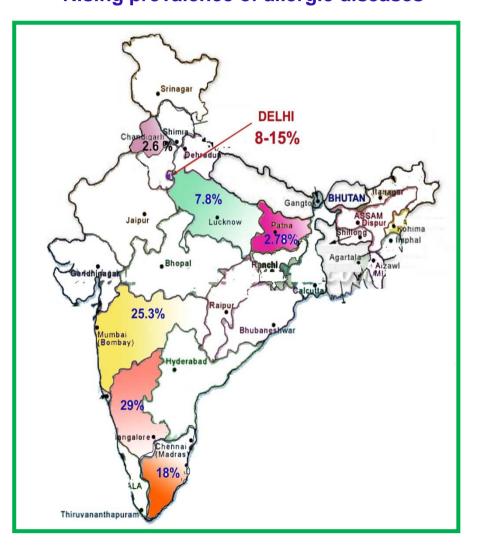

Food allergies are adverse reaction to a food or food component involving the body's immune system

It involves two primary components:

- Contact with food allergens
- Immunoglobulin E (IgE: an antibody in the immune system that reacts with allergens present on mast cells (tissue cells) or basophils (blood cells), which release histamine and other mediators causing allergic symptoms.

Phases of Allergic Reaction IGEN

29000 episodes of anaphylaxis- 120-150 death /year (U.S)


200 deaths /year (Europe)

Prevalence of allergic diseases in Asian countries

Allergy in India

•1/7th of the world population
•diverse culture and dietary habits
• Rising prevalence of allergic diseases

Food Allergy

- •Some work done on inhalant allergens
- •Food allergy attracted little attention

Preliminary studies:

•Common food allergens: •Barley, Mustard, Pea & Corn: 30%(n=64 asthmatics)

•Egg, milk, cereals, Legumes

•Rice, banana, colocasia, radish and citrus fruits

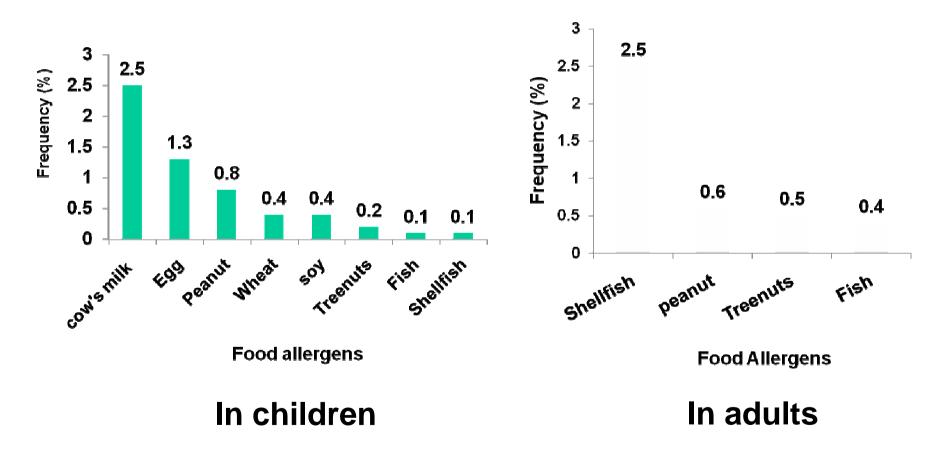
•fish allergy

•Chickpea allergy:2.7%(n=1400)

A food intolerance is an adverse food-induced reaction that does not involve the immune system.

e.g. Lactose intolerance.

- > Person lacks an enzyme needed to digest milk sugar.
- When eats milk products, symptoms such as gas, bloating, and abdominal pain may occur.


A food allergy occurs when the immune system reacts to a certain food.

- \succ The body synthesizes IgE antibodies to the food.
- On cross linking of these IgE antibodies, histamine and other chemicals (called mediators) cause hives, asthma, or symptoms of an allergic reaction.

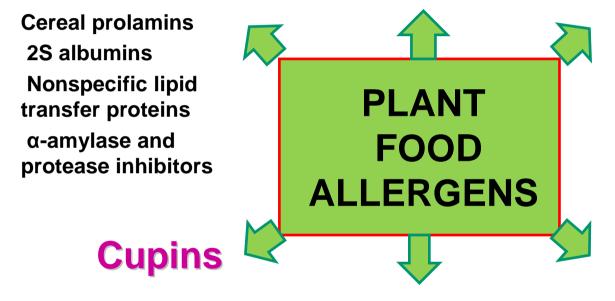
<u>Food intolerance involves the body's metabolism</u> <u>but not the immune system</u>

Common Food Allergens

Food Allergens

(Based on sensitization)

Class 1 food allergens


(Complete allergens)

- Primary sensitizers
- Mainly affect young children
- Sensitization usually occur through the GI tract.
- Water-soluble glycoproteins of 10 to 70 kDa
- Stable to heat, acid and proteases
- Also termed as 'complete food allergens'.
- E.g. Milk, Egg , Peanut

Class 2 food allergens (cross-reactive/ Incomplete/ Nonsensitizing Elicitors)

- Plant-derived proteins.
- Sensitization usually occurs in adults.
- Sensitive to heat and digestive enzymes
- Cannot cause per-oral sensitizations,
- Provoke allergic reactions in sensitized patients.
- Often called 'incomplete food allergens' or non-sensitizing elicitors.
- Major culprits of adult onset of food allergy.

Prolamins

related proteins

PR-1:

PR-2: Endo b1 3 glucanase PR-3: class I chitinases PR-4: Win like proteins PR-5 : Thaumatin-like proteins (TLPs) PR-9: lignin-forming peroxidases PR-10: Bet v1 homologues PR-14: lipid transfer proteins

Vicilins (7SSeed storage pr.) Legumins 11SSeed storage pr.)

Protease inhibitors

Proteases

Papain like cysteine proteases

Substilin like serine proteases

Kunitz type protease inhibitors Cereal α - amylase/protease inhibitor

Common food allergens: world-wide

- Legumes (Peanuts and Soybeans)
- ≻ Milk
- ≻ Eggs
- Fish (cod, salmon, haddock, etc)
- Crustacea (shrimp, crawfish, lobster,etc.)
- ≻ Wheat
- Tree nuts (almonds, walnuts, Brazil nuts, etc)
- Mollusks (snails, mussels, oysters, scallops, clams, squid)
- Selected food additives

Common food allergens in Indian Population

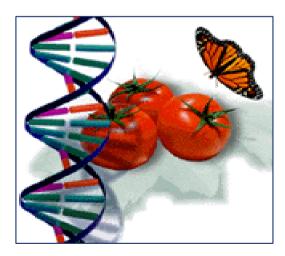
Top 10 allergic foods from a survey of 2000 patients

Rice Blackgram Lentil **Citrus fruits** Pea Maize Banana Lima bean Peanut Fish

Cross-Reactions: Food and pollens

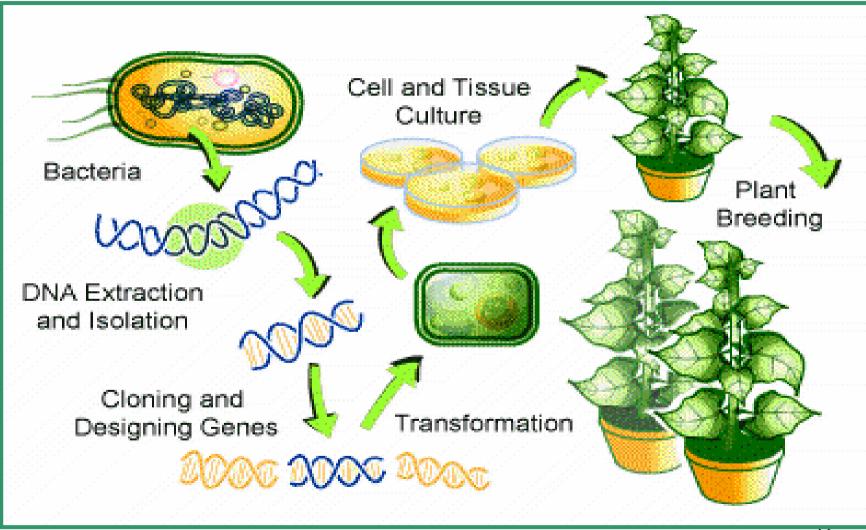
- > Ragweed- Watermelon, cantaloupe, honeydew, bananas
- > Mugwort- Celery
- **> Birch pollen- Carrots, apples, hazelnuts, potatoes**
- ➢ Banana − Latex

National prevalence of allergic diseases


- > Allergic Rhinitis 20%
- > Allergic Asthma 15%
- > Atopic Dermatitis 5%
- ➢ Insect Allergy 2%
- Food Allergy 2%

http://www.worldallergy.org/wad2005/national_data.pdf.

What are GM Foods ?



Plants in which genetic structure is manipulated by inserting a foreign gene from another biological organism or synthesized in lab to improve crops characteristics.

Overview of how transgenic crops are created

Associated Benefits of GM food crops

Human health Benefits:	Ecological Benefits:	Economic Benefits:
Nutritionally improved foods	Reduced need for agro-chemicals	Welfare of Human health and Ecological benefits.
≻More food security	>Soil conservation /	
≻Plant-produced	improved soil quality	Benefits of trade, to sellers and consumers
vaccines	>More efficient	
	production (less land needed for food)	

Associated Risks of GM food crops

Human health risks:

Allergy / Toxicity

Changes in nutritional composition

Cumulative effects on many new foods Ecological Risks:

Gene Flow

Effects on non-target species

Effects on ecological balances Economic Risks:

- Costs of health
- Ecological damage
 - Major economic displacements
 - Loss of business (consumer choice)

Transgenic crops under development and field trials in India

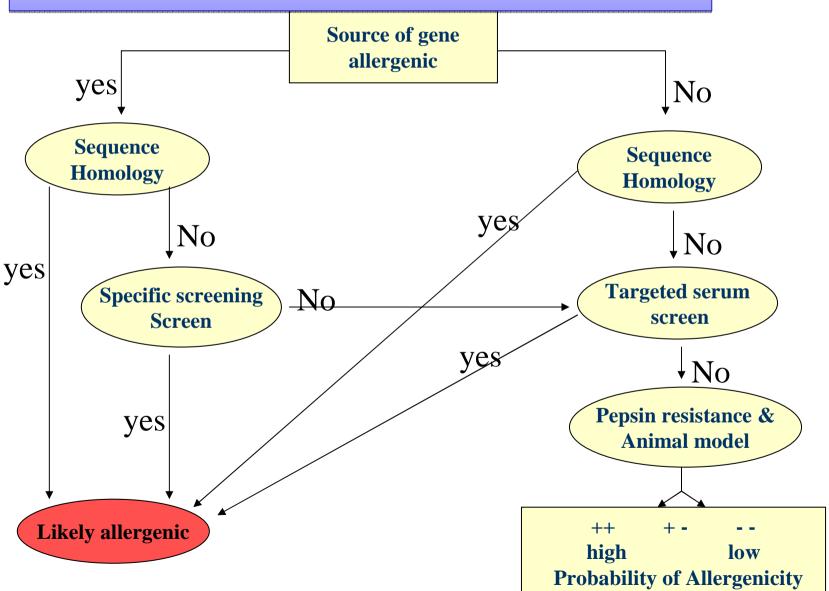
Crop	Organisation	Gene
Brinjal	IARI, New Delhi	cry1Ab
-	MAHYCO, Mumbai	cry1Ac
Cauliflower	MAHYCO, Mumbai	cry1Ac
	Sungrow Seeds Ltd., New Delhi	cry1Ac
Cabbage	Sungrow Seeds Ltd., New Delhi	cry1Ac
Chickpea	ICRISAT, Hyderabad	cry1Ac, cry1Ab
Groundnut	ICRISAT, Hyderabad	IPCVcp, IPCV replicase
Maize	Monsanto, Mumbai	CP4 EPSPS
Mustard	IARI, New Delhi	Cod A, Osmotin
	NRCWS, Jabalpur	Bar, barnase, barstar
	TERI, New Delhi	Ssu-maize Psy, Ssu-tp Crtl
	UDSC, New Delhi	Bar, barnase, barstar
Okra	MAHYCO, Mumbai	cry1Ac
Pigeonpea	ICRISAT, Hyderabad	cry1Ab+SBTI
	MAHYCO, Mumbai	cry1Ac
Potato	CPRI, Simla	cry1Ab
	NCPGR, New Delhi	Ama-1
Rice	Directorate of Rice Research,	Bacterial blight resistant,Xa-21,cry1Ab,gna gene,
	Hyderabad	sheath blight resistant
	Osmania University, Hyderabad	gna
	IARI, New Delhi	Bt,chitinase,cry1Ac and cry1B-cry1Aa
	MAHYCO, Mumbai	Cry1Ac
	MKU, Madurai	Chitinase,B-1,3-glucanase,osmotin
	MSSRF, Madurai	Genes from mangrove species, chitinaqse
	TNAU, Coimbatore	
Sorghum	MAHYCO, Mumbai	cry1Ac
Tomato	MAHYCO, Mumbai	cry1Ac
	NCPG <u>R,</u> New Delhi	Biotechnology Government

Source: Department of Biotechnology Government of

Global adoption of biotech crops in 2007: by Country

			-
Rank	Country	Biotech Crops	UTE OF GENOMICS EGRATIVE BIOLOGY
1	USA	Soybean, maize, cotton, canola, squash, papaya, alfalfa	
2	Argentina	Soybean, maize, cotton	
3	Brazil	Soybean, cotton	
4	Canada	Canola, maize, soybean]
5	India	Cotton	
6	China	Cotton, tomato, poplar, petunia, papaya, sweet pepper	
7	Paraguay	Soybean	
8	South Africa	Maize, soybean, cotton	
9	Uruguay	Soybean, maize	
10	Philippines	Maize	
11	Australia	Cotton	
12	Spain	Maize	
13	Mexico	Cotton, soybean	es
14	Colombia	Cotton, carnation	2
15	Chile	Maize, soybean, canola	ر ا م
16	France	Maize	e r
17	Honduras	Maize	<u><u><u></u> <u>i</u> <u>i</u> <u>i</u> <u>i</u> <u>i</u> <u>i</u> <u>i</u> <u>i</u> <u>i</u></u></u>
18	Czech Republic	Maize	Clive James, 2007
19	Portugal	Maize	
20	Germany	Maize	Source
21	Slovakia	Maize	no
22	Romania	Maize	Ň
23	Poland	Maize	J

International Guidelines for GM food Safety Assessment



- > WHO/FAO Decision tree for allergenicity assessment
 - **1997** First report for allergenicity assessment
 - **2001** Addition of animal model studies

Codex guidelines2001/2003

Safety assessment by <u>substantial equivalence</u> between GM and Native crop.

Allergenicity assessment of GM foods FAO/WHO Guidelines 2001

Substantial Equivalence – CODEX 2003

РН	EN	$ \mathbf{Y} $	РН

Morphology

Agronomic

disease resistance

drought resistance

yields

Organoleptic

COMPOSITION

Macronutrients

AA composition

FA composition

Anti-nutrients

Toxic substances

Allergens

Specific constituents

SAFETY ASSESSMENT

Toxicity

Allergenic potential

Nutritional

FEED EQUIVALENCE

Performance

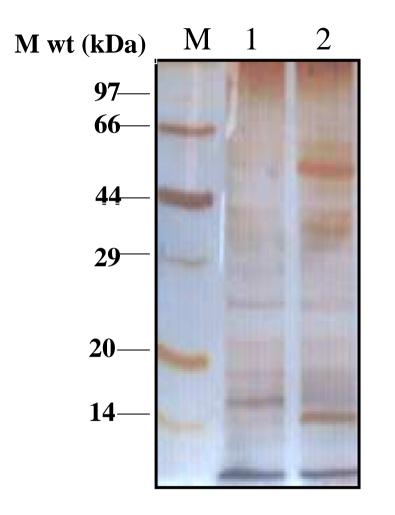
Assessment of Possible Allergenicity (Proteins)

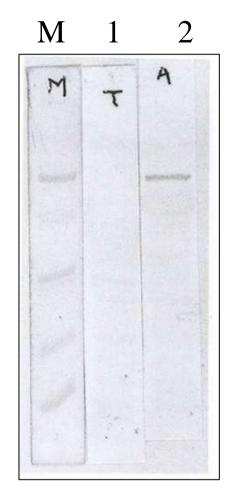
- Indicate if the donor organism(s) is a known source of allergens (defined as those organisms for which reasonable evidence of IgE mediated oral, respiratory or contact allergy is available).
- Amino acid sequence homology comparison of the newly expressed protein and known allergens.
- > Demonstrate the susceptibility of each newly expressed protein to pepsin digestion.
- Where a host other than the transgenic plant is used to produce sufficient quantities of the newly expressed protein for toxicological analyses, demonstrate the structural, functional and biochemical equivalence of the non-plant expressed protein with the plant expressed protein.
- For those proteins that originate from a source known to be allergenic, or have sequence homology with a known allergen, testing in immunological assays is to be performed where sera are available.

Genetically Modified Mustard

Plant : *Brassica juncea**

Gene introduced: *codA* gene from *Arthrobacter globiformis*


Protein expressed: Choline Oxidase


Mol wt.: ~60 kDa

Function: Choline oxidase provides resistance to plants against abiotic stresses such as high salinity, frost, etc.

Prasad et al., 2001

Lane 1: Native Mustard (Leaf)

Lane 2: GM Mustard (Leaf)

SDS-PAGE showing Silver stained bands

Western blot with antibodies raised in rabbit against choline oxidase

Computational Analysis for allergenicity

Homology studies

Structural database of allergenic proteins (SDAP):

>35% similarity to known allergens.

Food Allergy Research and Resource Program (Farrp): E-Value < 0.02

Swissprot database: To study cross-reactive epitopes Identical six aa stretch

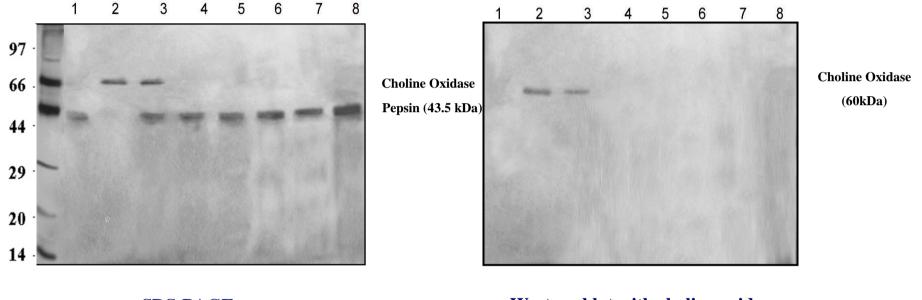
% aa identity with allergens using SDAP database

<u>Allergen</u>	Accession No.	<u>% identity</u>
Cand a 1	P43067	7.69 (42/546)
Cry j 1	BAA05543	6.96 (38/546

Sequence homology using Farrp database

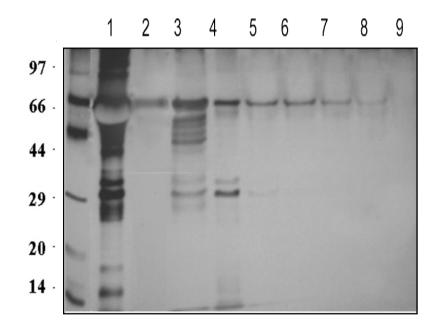
<u>Allergen</u>	Accession No.	<u>E- value</u>
Glycinin, Soyabean	AAA33964	0.49
Tri r 2, T. ruburum	AAD52013	1.4

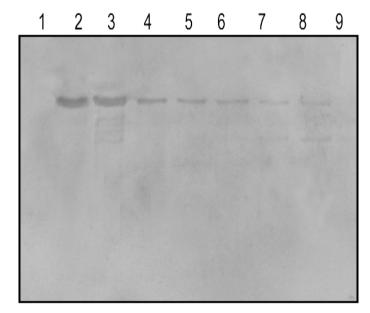
Identical 6 aa match using Swissprot database


Allergen	Accession No.	Species	<u>Amino</u>	acid	Match
Hev b 6	P02877	Hevea brasilier	nsis	VG	GGSA

Digestibility Studies

Choline oxidase degradation by Simulated Gastric Fluid (pepsin)


SDS-PAGE

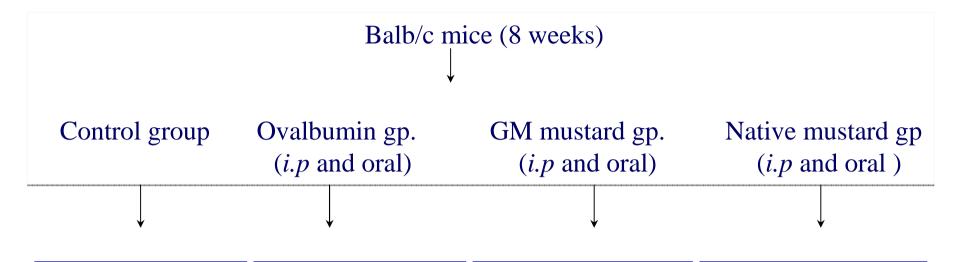

Western blot with choline oxidase antibodies

Choline oxidase degradation by Simulated Intestinal Fluid (pancreatin)

Choline Oxidase (60kDa)

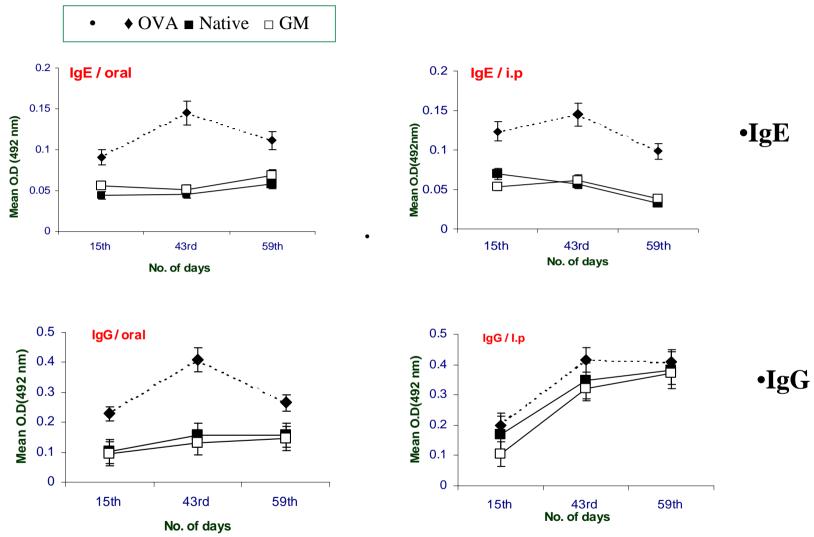
Western blot with choline oxidase antibodies

Lane 1 : Pancreatin


- 2 : Choline oxidase pure
- 3-8 : Choline oxidase + Pancreatin for 0, 0.5, 1, 2, 4, 6 and 8 hr.

Animal Model Studies

DEVELOPMENT OF ANIMAL MODEL

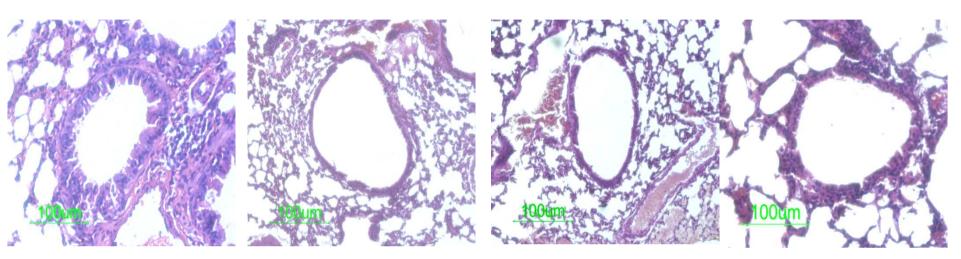


•PBS orally	• 0.1mg protein	•0.1 mg protein	•0.1 mg protein
•	•in PBS	•in PBS	•in PBS

- *i.p.* dosage: 0.1 mg protein on each 7th day for 6 weeksoral dosage: 0.1 mg protein daily for 6 weeks
- Blood taken on day 15, 43 and 59 for estimating specific IgE and IgG antibodies.
- > After sensitization mice were challenged with antigen.

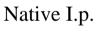
Singh et al., Allergy 61:491-497, 2006

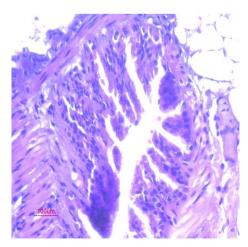
Sensitized mice challenged with the respective proteins


Mice No./dose		Oval	Ovalbumin Native Mustard		GM mustard		
	Groups	Oral	i.p.	Oral	i.p.	Oral	i.p.
1.	12 mg	1,2,4	1,2,3	0	0	0	0
2.	12 mg	1,2,3,4	1,2,4	0	0	1	0
3.	6 mg	1,3,	2,3	0	1	0	0
4.	6 mg	1,2,3,4	1,2,4	0	1	0	1
5	3 mg	1,2,3	1,3	-	-	-	-
6.	3 mg	1,3	1 ,2,3,4	-	-	-	-

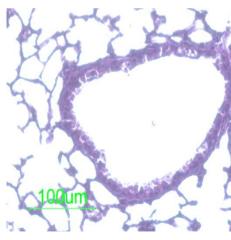
Control group challenged with 12 mg protein shows no symptom score. Symptoms score Card

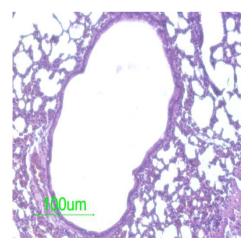
- **0** : No Symptoms
- 1 : Scratching and rubbing around nose, head & ear
- 2 : Labored respiration, heart beat fast and cyanosis around mouth and tail.
- **3** : Tremor and convulsions
- 4 : Death


Histological analysis of mice lungs after challenging with presensitized protein

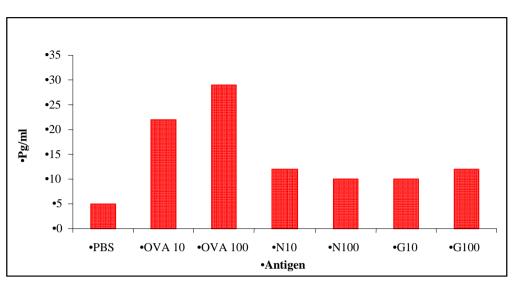


Ovalbumin oral

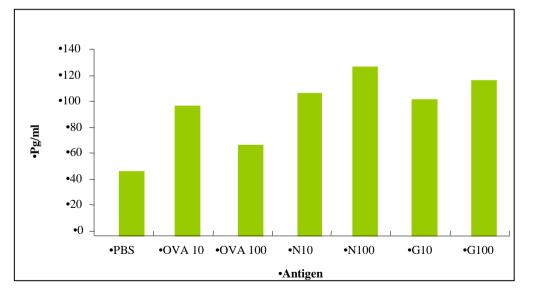

Native oral

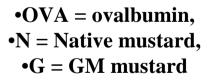

Control

Ovalbumin i.p


GM oral

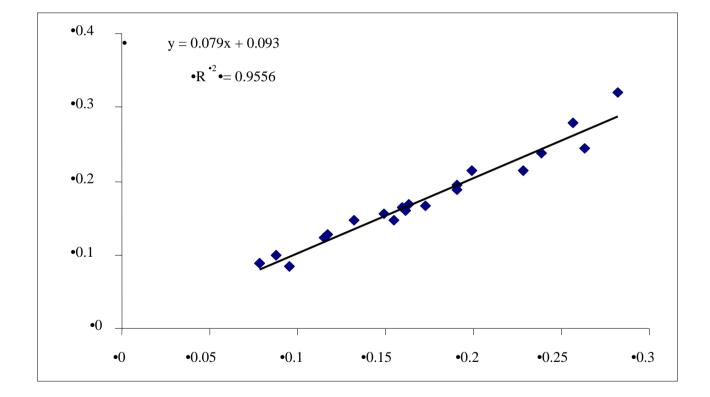
GM i.p. Singh et al., Allergy 61:491-497, 2006


Cytokines analysis for Th1/Th2 response



•OVA = ovalbumin, •N = Native mustard, •G = GM mustard

•IL-4 analysis of OVA,GM and native proteins sensitized mice


•IFN-γ analysis of OVA,GM and native proteins sensitized mice.

Specific sera screening

•Correlation between IgE binding of GM and Native mustard proteins in hypersensitive patient's sera

- ➤ GM mustard expressing choline oxidase have similar reactivity to that of native mustard.
- The protocols developed for comparative proteomics analysis can be used to study other GM crops.
- Animal model developed can be used for allergenicity assessment of other GM crops.

OSMOTIN

Basic ~25-kDa protein (246 amino acids) belonging to the PR-5 family.

By interaction with G proteins, it permeabilizes fungal cell wall and induces spore lysis, thus protecting the plant from such pathogens

Implicated in tolerance against abiotic stresses.

Induced in tobacco leaves, stems and roots by drought, high salt

Enhanced tolerance to infection by *Phytophthora infestans*

Osmotin gene from *Nicotiana tobacum* (common tobacco) was thus introduced in tomato/mustard

Allergenicity Assessment of

Osmotin

using bioinformatics

Sequence homology using Farrp allergen database

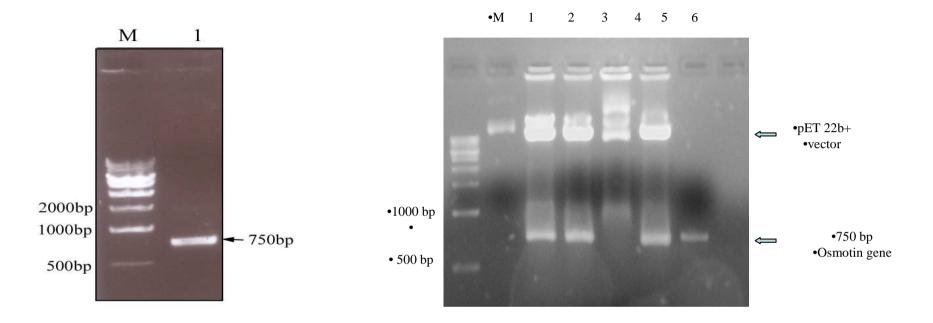
Allergen	Accession No.	% similarity
Actinidia deliciosa (kiwifruit)	CAI38795	84.375
Cryptomeria japonica (Japanese cedar)	BAF51970	74.766
Jun a 3	AAF31759	72.174
Jun r 3	AAR21072	75.120
Cup s 3	AAR21074	74.641
Malus x domestica	AAX19848	63.306
Mal d 2(apple)	Q9FSG7	63.710
Act c 2	P83958	89.474
Olea europaea	AAK58515	52.577
Act d 5	P84527	45.763
Dermatophagoides pteronyssinus	CAD38366	45.918

•11 allergens have 35% or more homology with osmotin protein

Amino acid identity with allergens using SDAP database

<u>Allergen</u>	Accession No.	<u>% identity</u>
Lyc e NP24(tomato)	P12670	89.80(220/245)
Cap a 1w(bell pepper)	CAC34055	86.53(212/245)
Cap a1(bell pepper)	AAG34078	57.96(142/245)
Jun a3(mountain cedar)	P81295	46.53(114/245)
Cup a 3(cyprus)	CAC05258	42.45(104/245)
Pru av 2(sweet cherry)	P50694	39.59(97/245)
Mal d 2(apple)	CAC10270	39.18(96/245)
Act c 2(kiwi)	P81370	8.57(21/245)

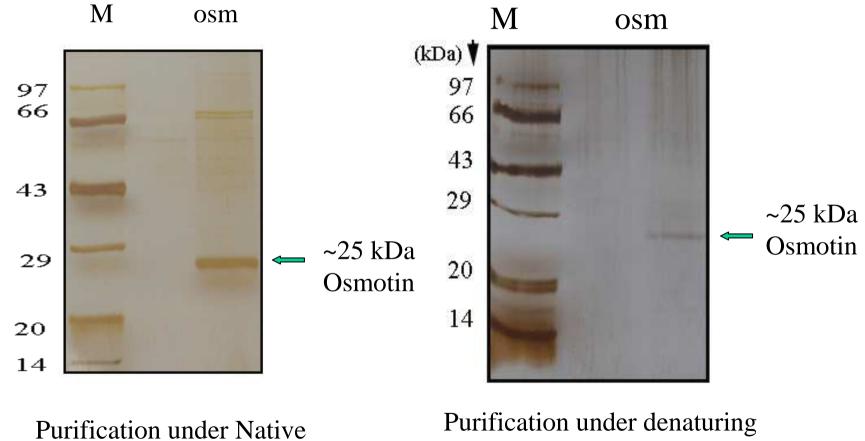
7 allergens showed 35% or more homology with osmotin protein


Summary

•Osmotin protein has homology with certain allergens.

•Hence, studies are required to confirm this observation.

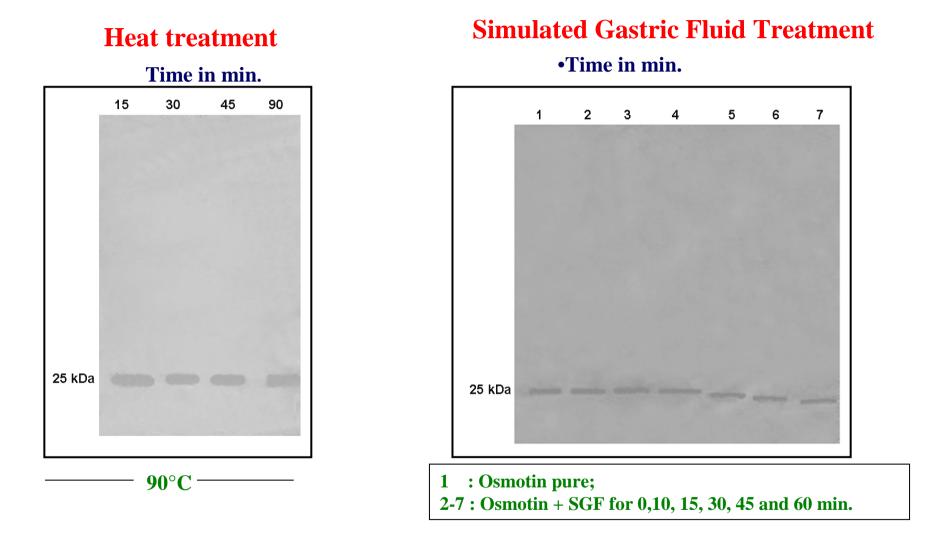
Cloning of osmotin gene


•PCR amplified Osmotin gene

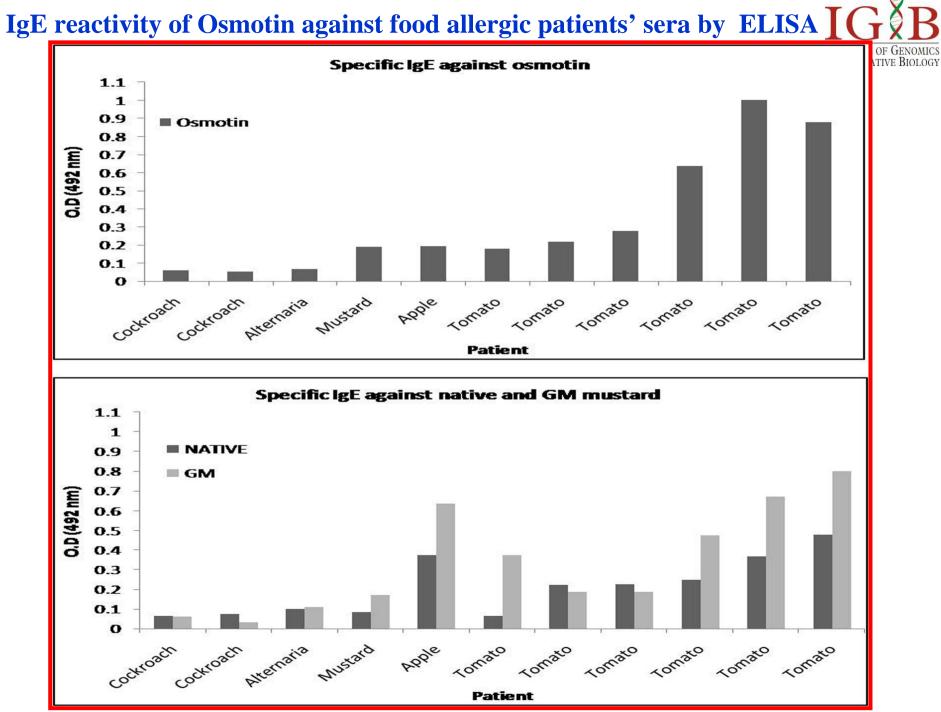
•Source : Nicotiana tabaccum

- M) marker
 - 1) pET 22b+ vector
- 2) clone 1 digested vector
- 3) clone 2 digested vector
- 4) clone 3 digested vector
- 5) clone 4 digested vector6) Osmotin DNA

Expression and purification of Osmotin protein



condition


condition

In-vitro studies with purified Osmotin protein

Western blot with antibodies against osmotin

Specific IgE reactivity against osmotin protein in food allergic patients' sera by ELISA.

	•	A
S.No.	Sample No.	Avergae
		O.D.(492 nm)
1	UG	0.4325
2	N	0.4855
3	182	0.6065
4	834	0.5265
5	482	0.4985
6	375	0.7805
7	1386	0.5405
8	1406	0.487
9	1328	0.5235
10	1176	0.4665
11	540	0.458
12	300	0.495
13	340(1:5)	0.785
14	1526	0.623
15	1040	0.6875
16	316	0.515
17	464	0.4385
18	343	0.439
19	As	0.302
20	284	0.4515
21	578	0.4515
22	552	0.53
23	Control (-ve)	0.138
24	Control (-ve)	0.175

•117 food allergic patient's sera were screened for specific IgE reactivity by ELISA and 22 patient's sera showed positive reaction against osmotin.

Osmotin has the properties of an allergen

but more studies are

required to confirm this observation

Health Risks of Genetically Modified Foods

It directly enters Human system

The GM crops give us a way to counter Global Food problem/nutrition

All these demands a proper assessment

Acknowledgements
Dr. B. P. Singh
Drof. S. N. Gaur
Prof. Raj Kumar
Prof. K.C. Bansal
Mr. Abinav Singh
Mr. Amit Mehta
Dr. Dolly Kumari

•IGIB mission " To translate concepts developed in basic biological research to commercially viable technologies for

health care ".
 Thank You

Genetically modified crops under field trial in Incluse of Genomics

Сгор	Trait	Organization
Brinjal	Insect resistance	IARI,MAHYCO,Sungro seeds Pvt. Ltd.
Cabbage	Insect resistance	Sungro seeds Pvt. Ltd.
Cauliflower	Insect resistance	Sungro seeds Pvt. Ltd.
Corn	Insect resistance	Monsanto (India), Metahelix Life science
Cotton	Insect resistance	IARI, MAHYCO along with
		20 different Pvt. groups
Ground nut	Virus resistance	ICRISAT
Mustard	Cytoplasmic male sterility University of Delhi	
Okra	Insect resistance	MAHYCO
Pigeon pea	Fungal resistance	ICRISAT
Rice	Fungal, insect resistance	IARI,MAHYCO
Tomato	Insect and viral resistance	MAHYCO,IARI

Source: Department of Biotechnology, INDIA

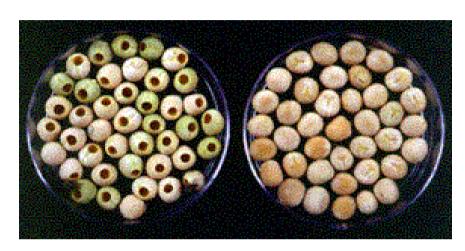
The Star link Episode

- Starlink corn developed by Aventis Cropsciences, USA
- contained a variant of BT toxin called Cry9C
- many people become ill from eating corn products containing the Cry9C protein.
- resistant to digestion in a laboratory test
- ➢ potential for allergenicity

"Star Link Corn is eventually out"

Monarch butterfly death from GM Pollen

- > The Monarch Butterfly is the "Bambi of insects"
- GM plants having cry gene produce a pollen containing crystalline endotoxin
- Pollens through air reaches milkweed that monarchs larvae feed
- Most of monarch butterflies died and the rest grew to only 50% normal size


"Monarch Butterfly are endangered Now"

GM peas expressing a bean gene

- Developed by CSIRO Australia
- Protection against Pea weevil

Non GM Pea (Weevil infected) **GM Pea**

- \succ bean α -amylase inhibitor gene is expressed in peas.
- > Mice exposed to α -amylase inhibitor GM-peas showed immune response.
- > inflammation in the lungs and increased serum antibody levels.

The development of GM peas is now stopped

Major uncertainties over the safety of the GM protection of the GM prote

- Arpad Pusztai found that **GM potatoes** with snowdrop lectin adversely affected every organ system of young rats & small intestine lining grew up to twice the thickness of controls
- Scientists in Egypt found similar results in the gastrointestinal tract of mice fed **GM potato** with Bt toxin.
- US FDA showed rats fed **GM tomatoes** with antisense gene to delay ripening developed small holes in their stomach.
- Aventis (now Bayer) found 100% increase in deaths of broiler chickens fed **glufosinate-tolerant GM maize** T25 compared to controls.
- Numerous anecdotes indicating that livestock wildlife and lab animals avoid GM feed, and fail to thrive or die when forced to eat it .

•Major uncertainties over the safety of the GM process

•Between 2001 and 2002, twelve dairy cows died on a farm in Hesse, Germany, after eating Syngenta's Bt176 GM maize, and others in the herd had to be slaughtered on account of mysterious illnesses [21]. To-date, there has been no detailed autopsy reports available, even though the company claims the deaths and illnesses were unrelated to Bt176. Nevertheless the Spanish Food Safety Authority has just withdrawn authorisation for Bt176 cultivation in Spain [22] after it had occupied almost all of the 20 000 hectares of GM maize grown in Spain since 1998 [23]. The decision was taken following an EFSA recommendation that GMOs containing antibiotic resistance marker genes such as that found in Bt 176, be restricted to field trials.

•Arpad Pusztai and colleagues found that GM potatoes with snowdrop lectin adversely affected every organ system of young rats, and the stomach and small intestine lining grew up to twice the thickness of controls [24].

•Scientists in Egypt found similar results in the gastrointestinal tract of mice fed GM potato with Bt toxin [25].

•US Food and Drug Administration had data since the early 1990s showing that rats fed GM tomatoes with antisense gene to delay ripening developed small holes in their stomach [24].

•Aventis (now Bayer) found 100% increase in deaths of broiler chickens fed glufosinate-tolerant GM maize T25 compared to controls [26].

•Numerous anecdotes from farmers and others indicating that livestock, wildlife and lab animals avoid GM feed, and fail to thrive or die when forced to eat it [26, 27].

Major GM foods in the market

Crop	Year	Gene Introduced	Intended Effect
Mustard	1992	acyl carrier protein thioesterase	High laurate canola oil
	1997	PAT	Glufosinate herbicide resistance
	2001	epsps	Glyphosate herbicide resistance
Corn	1995	CryIAb	Resistance to European corn borer insect
	1998	DAM	Male sterility
	1998	PAT	Glufosinate herbicide resistance
	1998	Cry 9C	Resistance to lepidopteron insect
	2003	Cry 1F	Resistance to lepidopteron insect
Soybean	1994	epsps	Glyphosate herbicide resistance
	1996	GmFad2-1 gene	High oleic acid