

Low cost recovery of reclaimed water from sewage mixed industrial effluents

'REWATER project'

This event is co-financed by the European Commission through the involvement of several projects.

A joint event organizated by:

THE PROBLEM

Domestic Effluents

This event is co-financed by the European Commission through the involvement of several projects.

A joint event organizated by:

'To develop a cost effective, natural and energy efficient process package to treat sewage-mixed industrial effluent to a recyclable quality free that is from pollutants (PPCPs), nutrients, micronutrients and pathogens'

This event is co-financed by the European Commission through the involvement of several projects.

SOLUTION

Biomass as by-product

Domestic Effluents

Industrial Effluents

Energy recovery through biogas

This event is co-financed by the European Commission through the involvement of several projects.

Discharge of

treated effluen

partially

A joint event organizated by:

National Environmental Engineering Research Institute (CSIR-NEERI)

Wastewater Technology Division

Dr. Rima Biswas Mondal

Work at CSIR-NEERI

Strategy

1. Anaerobic Reactor (UASB)

- 1. Establishing UASB
- 2. Optimizing operating parameters
- 3. Harnessing maximum biogas

- 2. Constructed Wetland System
- 1. Establishing CWS
- 2. Optimizing operating parameters
- 3. Prospecting for recycling treated water

- 3. UASB + CSW
- Operation of UASB and CWS in series
- 4. Reviewing other options
- Methalgae Biological filtration system

This event is co-financed by the European Commission through the involvement of several projects.

This event is co-financed by the European Commission through the involvement of several projects.

A joint event organizated by:

Start-Up

This event is co-financed by the European Commission through the involvement of several projects.

A joint event organizated by:

Performance of Anaerobic Unit

The unit is still under stabilization phase

This event is co-financed by the European Commission through the involvement of several projects.

Constructed Wetland System at CSIR-NEERI

This event is co-financed by the European Commission through the involvement of several projects.

A joint event organizated by:

Type: Free water, surface constructed

wetland

Flow: Vertical (Up-Flow)

Wetland Plant: Typha latifolia

Wastewater: Domestic Effluent

HRT: 2.4 d

OLR: 0.23 m/d

Sedimentation tank (2.55 m³)

Inlet tank (0.8 m³)

The mesocosm (4.6 m^3)

Outlet tank (0.34 m³)

This event is co-financed by the European Commission through the involvement of several projects.

A joint event organizated by:

5. No.	Plant Classification	Basis for Classification (Plant Height, m)	Number of Plants	
			August, 2012	October, 2012
1	Mature	2.5 - 3.5	14	16
2	Young	1 - 2.5	33	153
3	New	< 1	7	21
	Total Number of Plant	S	54	190
	Plant Density (No. of Plants/m²)		11	38

This event is co-financed by the European Commission through the involvement of several projects.

A joint event organizated by:

Overall Performance of CWS

Parameters		RAW SEWAGE	INLET	OUTLET
рН	Range (Min – Max)	6.7 – 7.4	6.9 – 7.4	6.8 – 7.8
COD (mg/L)	Avg. ± Std Dev.	139.28 ± 59.1	81.79 ± 30.22	39.33 ± 15.53
	Range (Min – Max)	69.12 – 310.4	42.7- 128.04	7.68 – 68
TKN (mg/L)	Avg. ± Std Dev.	29.87 ± 5.83	28 ± 5.6	22.4 ± 4.85
	Range (Min – Max)	25.2 – 36.4	22.4 – 33.6	19.6 – 28
NH ₃ -N (mg/L)	Avg. ± Std Dev.	9.6±4.2	8.92 ± 3.37	7.7 ± 3.54
	Range (Min – Max)	4.5-16.8	4.44 – 15.53	2.93 – 10.74
PO ₄ ³⁻ - P (mg/L)	Avg. ± Std Dev.	7.2±4.3	6.21 ± 3.74	5.1 ± 2.97
	Range (Min – Max)	3.2-15.6	2.25 – 13.05	2.03 – 12.15
TSS (mg/L)	Avg. ± Std Dev.	200 ± 53.96	34.67 ±23.28	10 ± 4.9
	Range (Min – Max)	132 – 260	20 – 80	4 – 16

This event is co-financed by the European Commission through the involvement of several projects.

Group of Environmental Engineering and Bioprocesses School of Engineering University of Santiago de Compostela, Spain Dr. Marta Carballa

This event is co-financed by the European Commission through the involvement of several projects.

A joint event organizated by:

Santiago de Compostela

Finland

Santiago de Compostela

This event is co-financed by the European Commission through the involvement of several projects.

A joint event organizated by:

Portugal

School of Engineering

This event is co-financed by the European Commission through the involvement of several projects.

A joint event organizated by:

Biogroup

8 Professors

5 Full Professors

3 Associate Prof.

4 Technicians

1 Technological Manager

40 Researchers

7 Post-docs

30 PhD Students

This event is co-financed by the European Commission through the involvement of several projects.

A joint event organizated by:

Research topics

- Development of bioprocesses
- Novel wastewater treatment technologies
- Anaerobic (co) Digestion
- Environmental Management: Life Cycle Assessment and carbon footprint
- Biological treatment of gaseous waste streams

http://www.usc.es/biogrup/

This event is co-financed by the European Commission through the involvement of several projects.

Biogroup role in REWATER project:

Micropollutants removal and LCA analysis

This event is co-financed by the European Commission through the involvement of several projects.

Organic micropollutants

Micropollutants: synthetic or natural substances occurring in waters at very low concentrations ($\mu g/L$ or ng/L)

Pharmaceutical and Personal Care Products (PPCPs): Bioactive ingredients of pharmaceuticals and personal care products and hormones.

Antiphlogistics, neurodrugs, antibiotics and fragrances

- •Increase of antibiotic resistance
- Bioaccumulation
- Endocrine disruption of aquatic organisms

A joint event organizated by:

EU-India STI

cooperation Days

Removal mechanisms

SORPTION

$$K_d = \frac{k_{sor}}{k_{des}} = \frac{C_S}{X_{TSS} \cdot C_W}$$

- Temperature, pH
- Organic matter content
- K_{ow} (absorption)
- pKa (adsorption)

This event is co-financed by the European Commission through the involvement of several projects.

BIODEGRADATION

$$r_{biol} = -\frac{dC}{dt} = k_{biol} \cdot X_{VSS} \cdot C_{W}$$

- Type of biomass and concentration
- Biomass activity
- Hydraulic Retention Time
- Sludge Retention Time

REWATER strategy for PPCPs removal

- To evaluate PPCPs removal in other WP processes.
- To design and test a biological filtration/adsorption system.

Powedered Activated Carbon

Nitrifying biomass

This event is co-financed by the European Commission through the involvement of several projects.

PPCPs biodegradation vs. Nitrifying activity

Fernandez-Fontaina et al., Water Research 46 (2012),5434-5444.

This event is co-financed by the European Commission through the involvement of several projects.

A joint event organizated by:

PPCPs biodegradation vs. HRT

Fernandez-Fontaina et al., Water Research 46 (2012),5434-5444.

This event is co-financed by the European Commission through the involvement of several projects.

Sequential Membrane reactor with PAC addition (SeMPAC)

Enhances removal of PPCPs

- Biodegradation (个SRT, 个X, adaptation)
- Sorption onto sludge
- Sorption onto PAC

Possible applications

- Hospital effluents
- Industrial wastewater (pharmaceutical, cosmetic production)
- Aquaculture

Patent ES 2 362 298 B2

This event is co-financed by the European Commission through the involvement of several projects.

Life Cycle Analysis (LCA)

- Holistic tool used to evaluate the environmental burdens associated with a product, process or activity (Baumann and Tillman, 2004).
- Widely used as a decision support tool in the selection of the best management strategy for wastewaters and solid wastes (Su and Rousseaux, 2002; Hospido et al., 2005; Clearly, 2009; De Feo and Malvano, 2009; Peters and Rowley, 2009; Hospido et al., 2010).
- Limited or no information about the environmental impact of wetlands, methalgae and micropollutants.

Reuse

This event is co-financed by the European Commission through the involvement of several projects.

A joint event organizated by:

Laboratory of Microbial Ecology and Technology (LabMET) Faculty of Bioscience Engineering Ghent University, Belgium Prof. Nico Boon

This event is co-financed by the European Commission through the involvement of several projects.

LabMET

Teaching staff: N. Boon, T. Van de Wiele, K. Rabaey

Post-doc: 9 **Scientific staff:** 34 PhD-collaborators

Technical staff: 8 persons **Administrative staff:** 3 persons

Master students: 38

3 key domains:

- » Applied microbial ecology & management
- » Anthropogenic and engineered environments
- » Host-microbe interactions, pre/probiotics

This event is co-financed by the European Commission through the involvement of several projects.

Hosted by National Geophysical Research Institute (NGIR - CSIR).

cooperation Days

LabMET role in REWATER project:

Sustainable carbon neutral methane oxidation

This event is co-financed by the European Commission through the involvement of several projects.

Methane emmisions from AD

- » Anaerobic effluents are oversaturated with CH_4 and CO_2 (Hartley et al., 2006; Biotech. Bioeng., 95, 384-398)
- » Anaerobic digestion: a novel wastewater treatment technology
 - Up to 25% of the produced CH₄ can be lost to the water phase (Cakir et al., 2005; Wat. Res., 39, 4197-4203)
 - Case study at Agristo plant (Harelbeke, Belgium)

This event is co-financed by the European Commission through the involvement of several projects.

Methalgae: the principle

- = coculture of methane oxidizing communities + algae
- = total oxidation of CH₄ to biomass without GHG
- = no expensive air sparging needed
- = removal of nutrients

This event is co-financed by the European Commission through the involvement of several projects.

Methalgae: visual observations

MOB with NO_3^- Methalgae NO_3^- Methalgae NH_4^+ (MOC) (N-MAC) (A-MAC)

Take home: co-existence of MOB and algae is possible

This event is co-financed by the European Commission through the involvement of several projects.

Methalgae: carbon balances

van der Ha, D., et al.. Water Res 45, 2845-2854.

Take home: with methalgae all methane is fixed in organic carbon

This event is co-financed by the European Commission through the involvement of several projects.

Methalgae: an evaluation

- » Co-culturing of MOB and algae is possible
 - No effect of algae presence on the methane removal rate
- » A GHG free methane removal was achieved
 - Algae oxidized the produced CO₂ almost completely
- » Algae provide MOB in situ of necessary oxygen
 - CH₄ removal was achieved with initially anoxic conditions
 - Low light intensities allow enough oxygen production for methane removal
- » Methalgae are useful as tertiary treatment
 - Partial removal of COD, H₂S, N & P
- » An optimized reactor set-up is a prerequisite for further application and implementation

REWATER Project

USC, Spain

Thanks for your attention

This event is co-financed by the European Commission through the involvement of several projects.

