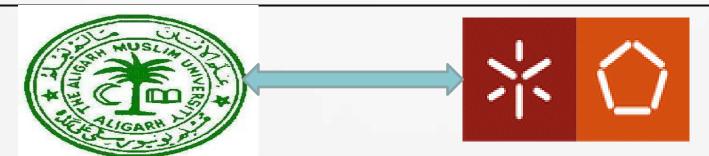


Madalena Alves¹, Farhana Masood², Abdul Malik²

- 1- University of Minho, Portugal
- 2- Aligarh Muslim University India



Biological Treatment (anaerobic/aerobic) of Pulp and Paper Industry Wastewater with Special Reference to Genotoxicity of Waste Before and After Treatment

Abdul Malik Aligarh Muslim University Madalena Alves University of Minho

University of Minho - 2 Campi

Department of Biological Engineering

Braga

25 km

Guimarães

CENTRE OF BIOLOGICAL ENGINEERING

Agricultural Sciences

Management

Arts

Medicine

Engineering & Technology Theology

Life Sciences

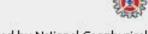
Commerce

Social Sciences

Sciences

Unani Medicine

Aligarh Muslim University



This event is co-financed by the European Commission through the involvement of several projects.

DEPARTMENT OF AGRICULTURAL MICROBIOLOGY

The department has its mandate as to create a centre of academic excellence in the field of education and research in Agricultural microbiology and newer Microbial technology; provides a sound academic background and environment for an overall development of personality for a successful career in Microbiology which fosters continuous improvement and innovation in the subject.

>Keeping in view the national demands, the Department of Agricultural Microbiology, Faculty of Agricultural Sciences, A.M.U., is imparting teaching and training at Post-graduate and Doctoral levels on various aspects of Microbiology such as, Soil Microbial Ecology, Immunology, Biochemistry, Food Microbiology, Environmental Microbiology, Industrial Microbiology and Agricultural Biotechnology and Molecular Microbiology. Indeed, teaching and hand-on training in such areas have a potential for creating opportunities/job prospects for the Post Graduate/ Ph. D students in the Biotechnology industry, Agriculture sectors and national/International Institutes and Universities. Keeping in view of the significant demand for trained Microbiologist, the Department of Agricultural Microbiology, is striving hard to bring excellence to the existing program of PG teaching & Research.

In fact, the country's prosperity is inseparably linked to agricultural progress, and a key to achieving this progress is a shift from resource-dependent agriculture to a science-based agriculture., The Agricultural microbiology and applied microbial technology has emerged as an important discipline, offering solutions to multifarious problems, presently encountered in developing sustainable agriculture and increasing crop productivity and food security environmental and human health protection and climate change.

The faculty members have excellent records of publication in journals with high impact factors and received fair citation in the scientific community. The department has completed various extramural research projects funded by national (UGC, DST, DBT, UPCST etc.) and international (Germany & Portugal) funding organization.

Biological Treatment anaerobic/aerobic) of Pulp and Paper Industry Wastewater with Special Reference to Genotoxicity of Waste Before and After Treatment

Indo-Portuguese cooperation Project

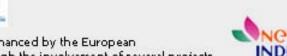
Exchanges between Aligarh and Braga

Madalena Alves and Diana Sousa visited Aligarh between 11 and 18 March 2011

Farhana Masood visited Braga between 1st and 30th April 2011

Abdul Malik visited Braga between 15 November and 15 December 2011

Raquel Pereira visited Aligarh between 19 March and 17 April 2012



Common research work with pulp and paper wastewater samples collected in India and **Portugal**

Outputs

1 Book Chapter of Minho team in a book edited by Abdul Malik

<u>Pereira, Luciana</u>; <u>Alves, M.M.</u> <u>Dyes-Environmental Impact and Remediation. In: Environmental Protection</u> <u>Strategies for Sustainable Development</u>, Abdul Malik, Elisabeth Grohmann (Eds), pp: 111-162, (ISBN: 978-94-007-1590-5), Springer, Dordrecht, 2012

1 Paper under preparation

1 book edited

Management of Microbial resources in the Environment. Abdul Malik, Elisabeth Grohmann, Madalena Alves (Eds) ISBN 978-94-007-5930-5, Springer.

Extended collaboration

Two FP7 applications

(> threshold but unfortunatly not funded)

CONTAMINATED SITES UNDER INVESTIGATION

Paper and Pulp Industry Wastewater

Portuguese Effluent Sample

- •high lignin content
- high absorbable organic halide (AOX) concentration
- color,
- •low biodegradability (COD/BOD) ratios
- Potential toxicity problems

Paper industry is one of the biggest user of water.
More than 47,000–80,000 gallons of wastewater discharged during paper production.
About 500 organochlorines have been identified eg. chloroform, chlorate, resin acids, chlorinated hydrocarbons, phenols, catechols, guaiacols, furans, dioxins, syringols, vanillins, etc. collectively termed as "adsorbable organic halides" (AOX).
AOX are biologically persistent, recalcitrant and highly toxic.
Their toxicity range from carcinogenicity, mutagenicity to acute and chronic toxicity.

OBJECTIVES

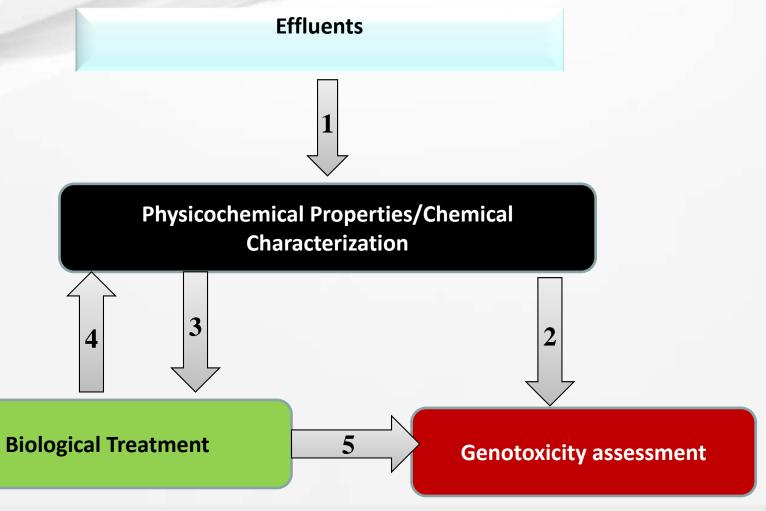


Table 1. Physico-chemical characteristics of the wastewaters before biodegradation

	Indian Wastewater	Portuguese Wastewater		
рН	4.0	6.87		
COD	7300	225		
Ammonium	7.62	< 1		
Nitrate	8.62	1.46		
Phosphate	64.7	2.20		
Total Nitrogen	76.40	< 20		
Total Phenolics	34.59	3.03		

Table 2. Physico-chemical characteristics of the wastewaters after anaerobic biodegradation

	Indian Wastewater	Portuguese Wastewater		
рН	7.3	7.37		
COD	443	170		
Ammonium	2.38	1.70		
Nitrate	< 1	< 1		
Phosphate	23.1	25.40		
Total Nitrogen	< 5	< 5		

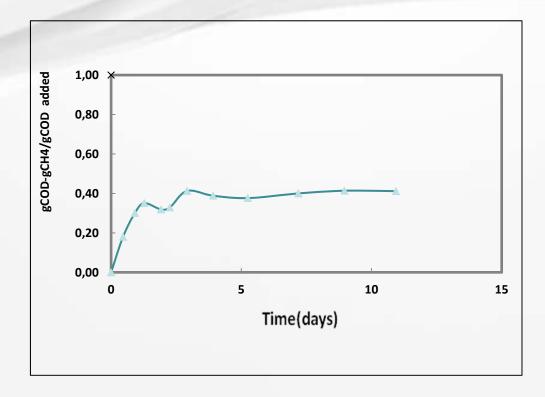


Figure. Methane production in the biodegradability assay conducted with Indian wastewater

Methodology

Composition of Indian and portuguese wastewaters were characterized before and after biodegradation in terms of:

- Hexane extract
- Choloform extract
- Acidic DCM fraction
- Basic DCM fraction

All the extracts were analysed by GC-MS

Hexane Extract

Indian Wastewater	Portuguese Wastewater
Cyclopropaneoctanoic acid 1,2-Benzenedicarboxylic acid, mono (2- ethylhexyl) ester Bis (2-ethylhexyl) phthalate Diphenylether 1,9-Nonanediol Pyrido[2,3-d] pyrimidine-2, 4 (1H, 3H	Cyclotetrasilonaxe, octamethyl Acetic acid, N(1,3)-hydroxy-1- phenylethylhydrazide Oxime-methoxy-phenyl 4-hydroxymandelic acid, ethylester-di-TMS Cyclotetrasilaxane, octamethyl Cyclotrissilaxane, hexamethyl Heptasilaxane,n-tetradecanemethyl Octasilaxane,n-hexadecamethyl

All the extracts were analysed (next slides)

EU-India STI Cooperation Days

Table 3. Compounds identified in Indian wastewater using GC-MS

Sample	Compounds identified	•>/
Hexane extract)	Cyclopropaneoctanoic acid	
	1,2-Benzenedicarboxylic acid, mono (2-ethylhexyl) ester	
	Bis (2-ethylhexyl) phthalate	
	Diphenylether	
	1,9-Nonanediol	
	Pyrido[2,3-d] pyrimidine-2, 4 (1H, 3H)	
Chloroform extract	Phenol, 2, 2methylene,6,1,1-dimethylethyl-4ethyl	
	Bis (2-ethylhexyl) phthalate	
	Ethyl N-propyl disulphide	
	Heneicosane	
	1-Decanol,2,hexyl	
	1-hexadecanol,2-methyl	
	Tetratetracontane	
	Heneicosane	
	Tetrapentacontane,1,5,4-dibromo	
Acidic DCM fraction	Hexadecen-1-ol, trans-9-	
	Dotriaconatne	
	9-methylnonadecane	
	1-Octadecanol	
	Di-n-octyl phthalate	
	Tetracosane	
Basic DCM fraction	Phenol, 2,4- bis (1,1-dimethylethyl)-	
	Di-n-octyl phthalate	
	Phenyl N-methylcarbamate	
7	1,2-Benzenedicarboxylic acid, mono (2-ethylhexyl) ester A joint event organizated by Nonadecane	

EU-India STI Cooperation Days

Table 4. Compounds identified in Portuguese wastewaters using GC-MS

Sample	Compounds identified	Cooperation Days
Hexane extract	Silanediol, dimethyl	7// 5
	Cyclotetrasilonaxe, octamethyl	4.1
	Acetic acid, N(1,3)-hydroxy-1-phenylethylhydrazide	
	Oxime-mthoxy-phenyl	
	4-hydroxymandelic acid, ethylester-di-TMS	
	Cyclotetrasilaxane, octamethyl	
	Cyclotrissilaxane, hexamethyl	
	Cyclotetrasilaxane, octamethyl	
	Heptasilaxane,n-tetradecanemethyl	
	Octasilaxane,n-hexadecamethyl	
Chloroform extract	1,3-Diazine	
	1,2-Benzenedicarboxyl acid, bis82-methyl propyl ester	
	Cycloaaactasiloxane, hexadeamethyl	
	2,3-Diphenylcyclopropylmethylphenylsulfoxide, trans	
	Benzene-1,1-(2-methyl-2-(phenylthio) cyclopropyldenel bis	
Basic DCM fraction	Borneol	
	3-Cyclohexene-1-methanol,n,n,4-trimethyl	
	Cyclooctasiloxane, hexadecamethyl	
	Phenol,2,5,bis (1,1dimethylethyl)	
	Z-8-Methyl-9-teetradecenoic acid	
	Chlolestan-3-ol,2-methylene	
	Phathalic acid, isobutyloactylester	
Acidic DCM fraction	Syn-Tricycloact-5-ene-335688-hexamethyl	
	B-Vatirenene	
	Spirolcyclopropane-1,1,naphthalen-4-one	
	Trycyclo(3,1) hexane, 3,6-diethyl-3,6-dimethyl	
	1-hexadecanol	
	Naphthalene-dimethyl	
	Phenol 2,4-bis(1,1-dimethylethyl)	
	2-Butyloxycarbonyloxy-1,1,10-trimethyl-6,9-epidioxydecain	
	Z-8-Methyl-9-teetradecenoic acid	
	Phthalic acid, isobutylactylester	
	Propanoic acid	
	tert-Hexadecanethiol	
	Tetradecane,2,6,10-trimethyl	

A joint event organizated by

EU-India STI

Table 5. Compounds identified in Indian wastewater after biodegradability test using GC-MS

Sample	Compounds identified	Cooperation Days
Hexane extract	Syn-Tricycloact-5-ene-335688-hexamethyl	
HEXAIIC EXII ACI	Isolangifolene-9,10 dehydro	4.4
	Diphenylether	
	Tran-2,2-Bisabolene epoxide	
	1-Hexadecanol	
	1,5,9-Cyclodecatriene-1,5,9-Thrimethyl	
	Z-(1,3,4-Epoxy) Tetradec-11-en-1-oleacetate	
	Cyclopropaneoctanoic acid	
	Propanoic acid	
	2 Topulote unit	
Chloroform extract	Phenol, 3-methyl	
	Phenol, 4-methyl	
	7-Tetracyclo-undecane-4,4,11,11-tetramethyl	
	Diphenylether	
	1-Docasene	
	1,5,9-Cyclododecatriene,1,5,9-trimethyl	
	3-Chloropropionic acid, heptadecylester	
	Ethanol, 2-(octadecyloxy)	
	1-Decanol,2,hexyl	
	1-hexadecanol,2-methyl	
	(2,3-Diphenylcyclopropylmethylphenylsulfoxide, trans	
	Tetrapentacontane,1,5,4-dibromo	
	Phenol, 2, 2methylene,6,1,1-dimethylethyl-4ethyl	
	Benzene-1,1-(2-methyl-2-(phenylthio) cyclopropyldenel bis	
Basic DCM fraction	Hexane,3,4,4,4-tetrafluoro	
	Phenol, 4-methyl	
	Phenol,2-ethyl	
	1-Nonedecane	
	2-propenoic acid, pentadecylester	
Acidic DCM fraction	Dibutyl phtalate	
	Ciclohexanecarboxylic acid	
	Phenol, 2-ethyl	
	Diphenylether	
	3-Eicosane	
	Phenol 2,4-bis(1,1-dimethylethyl)	
	12-Methyl-EE-2.13.octadecain-1-ol	
	Propionic acid,3,mercapto-dodecylester	

EU-India STI

Table 6. Compounds identified in Portuguese wastewaters after biodegradability test using GC-MS EU-India STI Cooperation Days

Sample	Compounds identified	10
Hexane extract	Isolangifolene-9,10 dehydro	
	1-Docasene	
	Trans-2-Hexadecenoic acid	
	1,2-Benzenedicarboxyl acid, butyl2-ethylhexylester	
	1-Decanol,2,hexyl	
Chloroform extract	Ethane 1,1achloro	
	1-docasene	
	trans-2-Hexadecenoic acid	
Basic DCM fraction	3-Benzylsulfonyl-2,6,6-trimethyloic acid-3,1,1 heptane	
	3-Eicosene	
	3-Cloropropionic acid, heptadecylester	
	Lenthiorine	
Acidic DCM fraction	Z-1-Chloro-2-methylsulfonylethylene	
	1,2.3-Tritriolane	
	(2,2,6-Trimethyl-bicyclo hept-1yl-methanol	
	Z-8-Methyl-9-teetradecenoic acid	
	Phthalic acid, isobutylactylester	
	propanoic acid didodecyclester	

Reversion of *Salmonella* tester strains (TA97a, TA98, TA100, TA102 and TA104) was analyzed for all extracts (next slide – one example for hexane and chloroform extracts)

Table 7. Reversion of *Salmonella* tester strains in the presence of hexane extracted Indian wastewater sample

Doses (µl/plate)					* * 1.		
Control	1	5	10	20	40	Mi	m
89 ± 6	181 ± 10 (2.0)	228 ± 9 (2.5)	284 ± 11 (3.1)	312 ± 8 (3.5)	276 ± 8 (3.1)	0.91	3.5
29 ± 4	119 ± 7 (4.1)	167 ± 8 (5.7)	241 ± 6 (8.3)	377 ± 12 (13.0)	319 ± 10 (11.0)	2.48	6.7
124 ± 7	208 ± 8 (1.6)	260 ± 11 (2.0)	316 ± 8 (2.5)	390 ± 11 (3.1)	338 ± 13 (2.7)	0.76	4.5
239 ± 10	289 ± 13 (1.2)	331 ± 10 (1.3)	400 ± 9 (1.6)	468 ± 13 (1.9)	411 ± 12 (1.7)	-0.04	4.0
328 ± 12	371 ± 14 (1.1)	427 ± 13 (1.3)	478 ± 17 (1.4)	523 ± 14 (1.5)	485 ± 14 (1.4)	-0.52	3.5
	89 ± 6 29 ± 4 124 ± 7 239 ± 10	89 ± 6 $181 \pm 10 (2.0)$ 29 ± 4 $119 \pm 7 (4.1)$ 124 ± 7 $208 \pm 8 (1.6)$ 239 ± 10 $289 \pm 13 (1.2)$	Control 1 5 89 ± 6 $181 \pm 10 (2.0)$ $228 \pm 9 (2.5)$ 29 ± 4 $119 \pm 7 (4.1)$ $167 \pm 8 (5.7)$ 124 ± 7 $208 \pm 8 (1.6)$ $260 \pm 11 (2.0)$ 239 ± 10 $289 \pm 13 (1.2)$ $331 \pm 10 (1.3)$	Control 1 5 10 89 ± 6 $181 \pm 10 (2.0)$ $228 \pm 9 (2.5)$ $284 \pm 11 (3.1)$ 29 ± 4 $119 \pm 7 (4.1)$ $167 \pm 8 (5.7)$ $241 \pm 6 (8.3)$ 124 ± 7 $208 \pm 8 (1.6)$ $260 \pm 11 (2.0)$ $316 \pm 8 (2.5)$ 239 ± 10 $289 \pm 13 (1.2)$ $331 \pm 10 (1.3)$ $400 \pm 9 (1.6)$	Control 1 5 10 20 89 ± 6 $181 \pm 10 (2.0)$ $228 \pm 9 (2.5)$ $284 \pm 11 (3.1)$ $312 \pm 8 (3.5)$ 29 ± 4 $119 \pm 7 (4.1)$ $167 \pm 8 (5.7)$ $241 \pm 6 (8.3)$ 377 ± 12 (13.0) 124 ± 7 $208 \pm 8 (1.6)$ $260 \pm 11 (2.0)$ $316 \pm 8 (2.5)$ $390 \pm 11 (3.1)$ 239 ± 10 $289 \pm 13 (1.2)$ $331 \pm 10 (1.3)$ $400 \pm 9 (1.6)$ $468 \pm 13 (1.9)$	Control 1 5 10 20 40 89 ± 6 $181 \pm 10 (2.0)$ $228 \pm 9 (2.5)$ $284 \pm 11 (3.1)$ $312 \pm 8 (3.5)$ $276 \pm 8 (3.1)$ 29 ± 4 $119 \pm 7 (4.1)$ $167 \pm 8 (5.7)$ $241 \pm 6 (8.3)$ 377 ± 12 319 ± 10 (13.0) (11.0) 124 ± 7 $208 \pm 8 (1.6)$ $260 \pm 11 (2.0)$ $316 \pm 8 (2.5)$ $390 \pm 11 (3.1)$ $338 \pm 13 (2.7)$ 239 ± 10 $289 \pm 13 (1.2)$ $331 \pm 10 (1.3)$ $400 \pm 9 (1.6)$ $468 \pm 13 (1.9)$ $411 \pm 12 (1.7)$	Doses (μl/plate) Control 1 5 10 20 40 Mi 89 ± 6 181 ± 10 (2.0) 228 ± 9 (2.5) 284 ± 11 (3.1) 312 ± 8 (3.5) 276 ± 8 (3.1) 0.91 29 ± 4 119 ± 7 (4.1) 167 ± 8 (5.7) 241 ± 6 (8.3) 377 ± 12 319 ± 10 2.48 (13.0) (11.0) 124 ± 7 208 ± 8 (1.6) 260 ± 11 (2.0) 316 ± 8 (2.5) 390 ± 11 (3.1) 338 ± 13 (2.7) 0.76 239 ± 10 289 ± 13 (1.2) 331 ± 10 (1.3) 400 ± 9 (1.6) 468 ± 13 (1.9) 411 ± 12 (1.7) -0.04

Table 8. Reversion of Salmonella tester strains in the presence of chloroform extracted Indian wastewater sample

Doses (µl/plate)								
Strain	Control	1	5	10	20	40	Mi	m
TA97a	82 ± 6	138 ± 6 (1.6)	162 ± 8 (1.9)	221 ± 9 (2.6)	275 ± 9 (3.3)	241 ± 9 (2.9)	0.85	3.7
TA98	35 ± 5	147 ± 8 (4.2)	$200 \pm 7 (5.7)$	267 ± 10 (7.6)	312 ± 14 (8.9)	278 ± 11 (7.9)	2.10	4.8
TA100	130 ± 9	178 ± 11 (1.3)	243 ± 11 (1.8)	$330 \pm 8 (2.5)$	371 ± 12 (2.8)	339 ± 10 (2.6)	0.61	4.7
TA102	241 ± 10	283 ± 13 (1.1)	325 ± 9 (1.3)	386 ± 11 (1.6)	439 ± 13 (1.8)	394 ± 13 (1.6)	-0.19	3.6
TA104	325 ± 11	359 ± 1 (1.1)	418 ± 12 (1.2)	472 ± 16 (1.4)	516 ± 16 (1.5)	478 ± 16 (1.4)	-0.53	2.9

Research Institute (NGRI- CSIR).

EU-India STI Cooperation Days

CONCLUSIONS

- > Both Indian and Portuguese wastewater samples showed considerable biodegradation
- > All the wastewater samples are heavily contaminated with various organic compounds
- >Genotoxicity of different wastewater samples arranged as follows: dichloromethane extracted water samples > hexane extracted water samples > chloroform extracted water samples.
- **▶**TA98 was found to be the most responsive strain in terms of mutagenic index, mutagenic potential and induction factor, indicating the presence of frame shift mutagens in the test samples.
- ➤ Wastewater from India has higher mutagenic index, induction factor, and more slope (m) of the response with increasing doses in comparison to wastewater from Portugal.

