

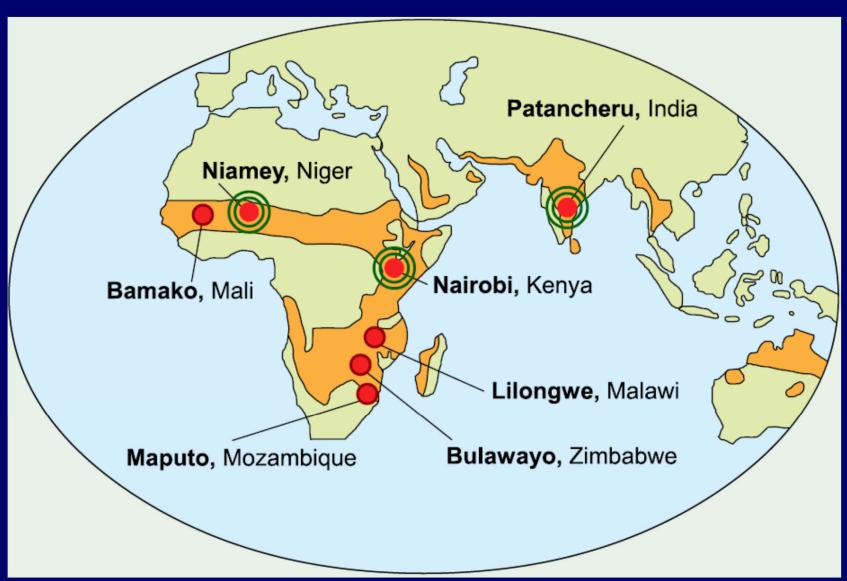
Water4Crops-India

Integrating bio-treated wastewater reuse with enhanced water use efficiency to support the green economy in EU and India (India side)

SP Wani and Team

International Crops Research Institute ffor the Semi-Arid Tropics (ICRISAT)
Patancheru 502 324, Andhra Pradesh, India

International Crops Research Institute for the Semi-Arid Tropics



ICRISAT Locations in the SAT

ICRISAT Experimental Field Facilities

Well-laid plots

Alfisols and Vertisols

Farm machinery

Linear irrigation

Furrow irrigation

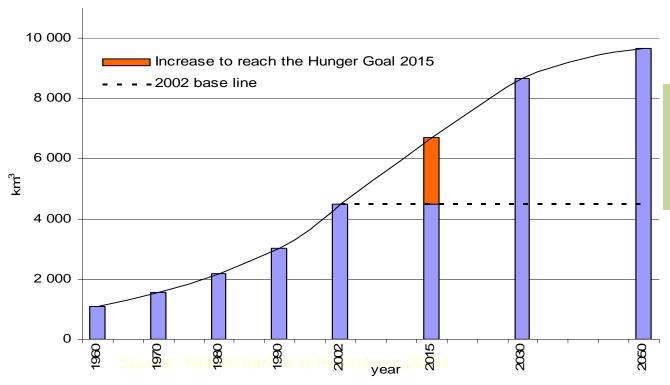
Sprinkler irrigation

Challenges to Produce More Food with Limited Water

A Water-Short World

Projected Water Scarcity in 2025

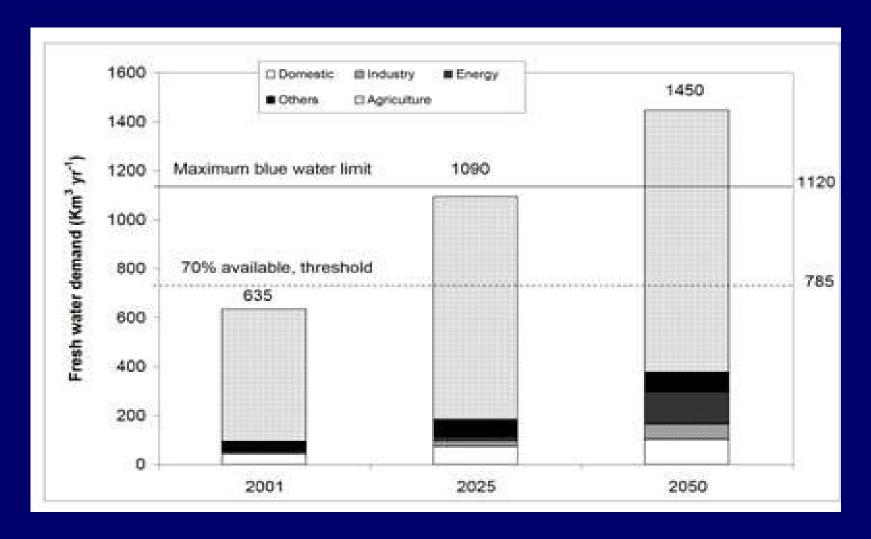
Rainfed Agriculture in Need of Resource Conservation Technology


Water Demand to meet MDG

With improved water productivity (1800 \longrightarrow 1200 m³ t⁻¹) additional water demand will be:

By 2015 1815 km³

By 2030 3000 km³



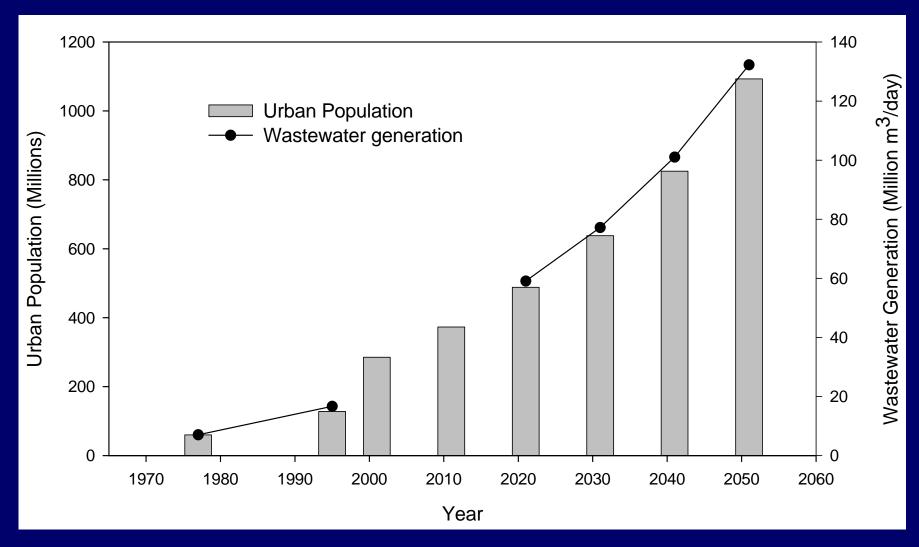
Balanced diet will need 1300 m³ person⁻¹ year⁻¹

Present and Anticipated Future Fresh Water Demand for Food Production and Other uses in India

Source: Central water commission, 2005

Per Capita Water Availability in India

Year	Population (Million)	Per capita water availability M ³ /year
1951	361	5177
1955	395	4732
1991	846	2209
2001	1027	1820
2025	1394	1341
2050	1640	1140


Source: Govt. of India, Ministry of Water Resources, 2009

Present and Anticipated Future Urban Population and Wastewater Generation in India

Science with a human face

Source: Ministry of Environment & Forests, 2007

About the Project

Water4Crops-India					
Collaborative Projects	KBBE.2012.3.5-03: Biotechnological wastewater treatments and reuse in agronomical systems				
Proposal Title	Integrating bio-treated wastewater reuse with enhanced water use efficiency to support the green economy in EU and India (India side)				
Duration	48 months				
Call identifier	FP7-KBBE-2012-6-Singlestage				

Sustainable Intensification of Agriculture

- > To provide food for growing
- To produce biomass as population feed and resource to produce chemicals and energy
- Water availability and soil health are critical factors

Water 4 Crops

To provide sustainable solutions through

- Increasing water availability by developing new technologies to treat and reuse wastewater
- Using water more efficiently in irrigation
- Better management of water, land and crops to develop viable, stronger and green economy

Objectives

- ➤ Develop and demonstrate integrated treatment processes for agro-food industry effluents targeted for recovery of economically useful components and recycling of water suitable for irrigation
- Selection and optimization of fungal consortium to remove contaminants from municipal wastewater for re-use in agriculture
- ➤ Enhancing water use efficiency through improved irrigation systems, agronomic practices and using validated simulation models
- Assess impacts of treated wastewater on soil, crop produce and groundwater quality
- Increasing sea water use efficiency through Integrated Mangrove-Fishery Farming System

Objectives (Cont..)

- Mapping and characterization of quantitative trait loci (QTL) for drought tolerance related traits in maize, sorghum, pearl millet and chickpea
- ❖ Improving drought adaptation using marker-assisted breeding and trait-based selection approaches in maize, sorghum, pearl millet and chickpea, and transgenic approaches in chickpea
- ❖ Evaluate and optimize the proposed combinations of biotreatment and wastewater reuse from a perspective of supporting green growth and to boost interaction between knowledge organisations and industries of the European and Indian parties

Objectives of Water 4 Crops (EU Side)

- Production of water for irrigation from wastewater and return of nutrients and fertilizer to the land
- > Recovery of specific high-value products from the wastewater
- Develop an easy and cheap microbial monitoring method to control irrigation water quality for pathogens
- Optimize domestic wastewater treatment, recycling and discharge via constructed wetlands
- > Development of irrigation products, systems and strategies coupling with irrigation systems
- Modeling the impact of using poor quality water on crop and soil quality

Objectives of Water 4 Crops (EU Side) (Cont..)

- Improved water use efficiency at field level through genomics and breeding
- Development of green economy by transdisciplinary cocreation of agribusiness opportunities and water biotreatment
- > Stimulate cross fertilization and knowledge transfer between the WPS and activities in Europe and India
- Disseminate the newly developed technologies, new economic concepts and local business demand

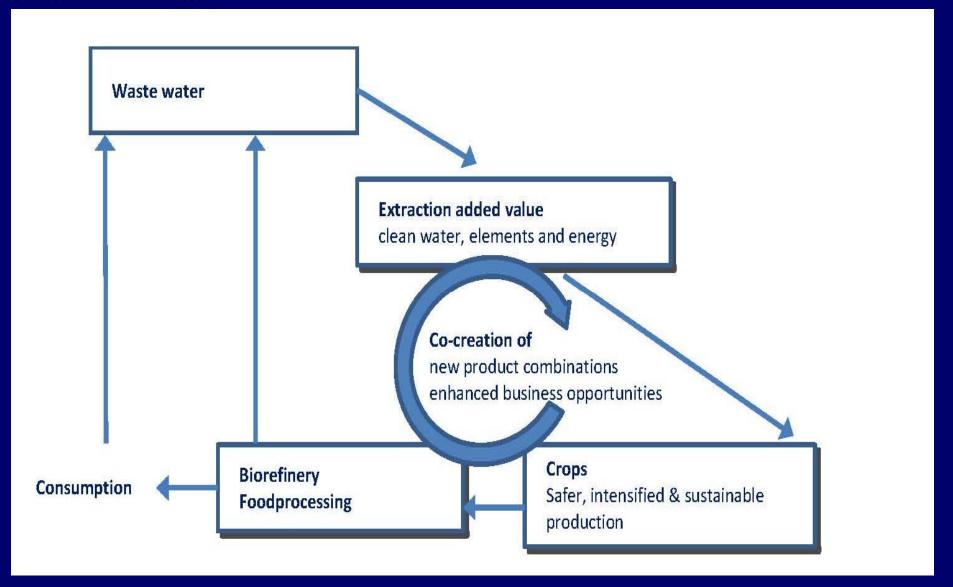
Work Packages

Work package	Title
WP1	Agro-food industry wastewater valorization and reuse
WP2	Municipal wastewater bio-treatment and reuse
WP3	Agricultural water management
WP4	Development of water efficient crop varieties
WP5	Enabling green growth using water treatment and reuse innovations
WP6	Dissemination and technology exchange
WP7	Management & Coordination

Consortium Partners

1	International Crops Research Institute for the Semi-Arid Tropics	(ICRISAT) CICRISAT
2	The Energy and Resources Institute (TERI)	teri
3	Amity University Uttar Pradesh (AUUP)	AMITY
4	University of Agricultural Sciences Dharwad (UASD)	
5	MS Swaminathan Research Foundation (MSSRF)	M S S R F
6	National Environmental Engineering Research Institute (NEERI)	<mark>नीरी</mark> NEERI
7	Jain Irrigation Systems Limited (JISL)	OLAN°
8	Euro India Research Centre (EIRC)	EuroIndia
9	SABMiller (SABM)	SAB MILLER INDIA
10	University of Agricultural Sciences Bangalore (UASB)	
11	PRAJ Matrix (PRAJM)	PRAJ
12	Ugar Sugar (UGSG)	The Uger Suger Works Lttl.
13	Larsen & Toubro (L&T)	LARSEN & TOUBRO It's all about imagineering
14	Ion Exchange	É ION EXCHANGE 191 FORMATS (INDIAL LTD) Tatal Environment Salutions

Water 4 Crops: Strategy



- > Consortium approach Public Private Partnership
- > Mirror case approach
- > Innovative modular biotechnological process
- Co-learning and evolutionary
- Co-creation of new products leading to new business opportunities

The Water4crops Principle

Concept of the Mirror Cases

Technology Development Hot Spots (Europe)

Technological option

Technological demand

Technological option

Technological demand

Technology Development Hot Spots (India)

Waste water treatment plant, Bari IRSA Laboratory Bari/Rome Membrane treatment

Sparta olive oil waste water treatment

Laboratories BOLOGNA FHVW CEMAGREF Aix • Discuss technological advances

- Exploit business opportunities
- Facilitate targeted training

- Discuss technological advances
- Exploit business opportunities
- Facilitate targeted training

Ugar sugar works with Praj and Larsen & Toubro

Jain Laboratory and field experiment facilities

TERI Laboratory and field experiment facilities

Integration with EBCT

Dissemination and technology transfer activities

Mirror case (Europe) "Emalia Romagna"

Mirror case (India) "Hyderabad"

Distribution of Work Packages

Partners	WP1	WP2	WP3	WP4	WP5	WP6	WP7
ICRISAT	Y	Y	Y	Y	Y	Y	Υ
TERI	Y				Υ	Y	Υ
AUUP		Y			Y	Y	Υ
UASD			Y	Y	Y	Y	Y
MSSRF			Y	Y	Y	Y	Y
NEERI	Y	Y			Y	Y	Y
JISL	Y		Y		Y	Y	Y
EIRC					Υ	Υ	Y
SABMiller	Y		Y		Y	Y	Y
UASB				Y	Y	Y	Y
PRAJ Matrix	Y				Y	Y	Y
Ugar Sugar	Y				Υ	Υ	Υ
Larsen & Toubro	Υ				Υ	Υ	Υ
Ion Exchange					Υ	Υ	

WP1: Deliverables Agro-Food Industry Wastewater Valorization and Reuse

No.	Deliverable name	Nature	Months
1.1	Characterized samples of selected wastewater	R	12
1.2	CW and HRTS systems demonstrated	D	30
1.3	Demonstrated fungal decolourization system	D	42
1.4	Algal treatment system demonstrated	D	48
1.5	Carbons and membranes for the recovery of phenolics / pigments developed	R	48
1.6	Impact of treated and untreated wastewater use on soil, crop and groundwater quality assessed	R	48

WP2: Deliverables for Innovations in Municipal Wastewater bio-treatment and Reuse

No.	Deliverable name	Nature	Months
2.1	Selected efficient strains for fungal consortium identified	R	12
2.2	Optimized fungal consortium for wastewater treatment developed	R, O	24
2.3	Trials with fungal consortium, P. indica, and nano-coated silver gravel for removal of contaminants from wastewater conducted	R, O	36
2.4	Fungal active ingredient within consortium developed Gel with	R, O	36
2.5	Impact of treated wastewater use in agriculture assessed	R	48

3.9

format

WP3: Deliverables for Agricultural Water Management

48

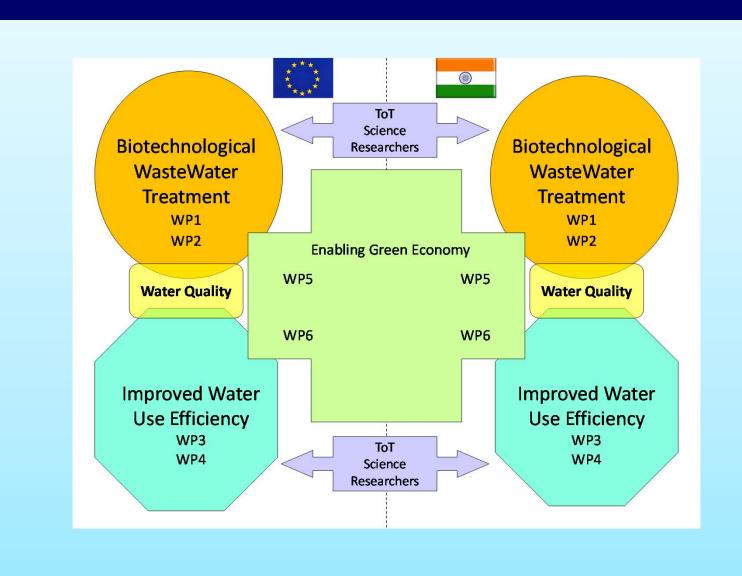
No.	Deliverable name	Nature	Months
3.1	Benchmark sites characterized	R	12
3.2	Efficient irrigation system evaluated	R, D	36
3.3	Impact of wastewater on crops, soil and groundwater documented	R	48
3.4	Models for enhancing WUE at field and micro-watershed level validated	R	48
3.5	Increased land and sea water productivity	D	48
3.6	Replicable model demonstrated as integrated bioshield and livelihood option	D	48
3.7	Package of halophyte farming systemdeveloped	D	48
3.8	Enhanced capacity of community, other stakeholders and MSSRF staff on sea water farming	0	48

Availability of tool kit on IMFFS in print and multimedia

WP4: Deliverables for Development of Water Efficient Crop Cultivars

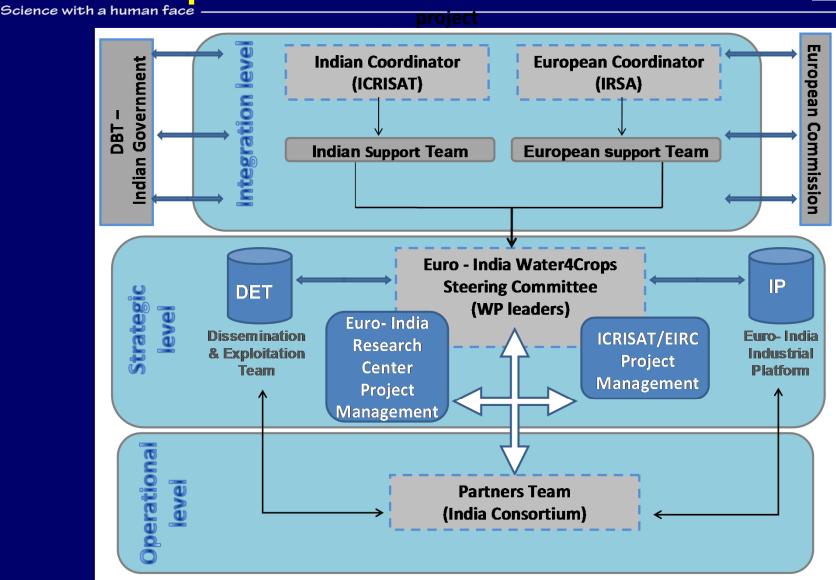
No.	Deliverable name	Nature	Months
4.1	Information on the most adequate combinations of species/genotypes x environment x management for different drought scenarios in India and EU	R	36
4.2	Information on QTL (QTL combination) underlying the drought adaptation traits in maize, sweet sorghum and pearl millet at particular drought stress environments	R	36
4.3	Mechanisms for water use efficiency and salinity tolerance characterized across crop species	R	48
4.4	Chickpea breeding lines with improved drought adaptation	R	48
4.5	Well characterized DREB1A and P5CSF transgenic events of chickpea with improved drought tolerance	R	46
4.6	Transgenic tomato over expressing PgNHX1, AVP1 and co- expressing PgNHX1 and AVP1 genes for salt tolerance	R	48
4.7	Trained human resources in research on drought adaptation of crops and integrated breeding for drought adaptation	0	48

Deliverables for WP5, WP6 and WP7



No.	Deliverable name	Nature	Months			
WP5- E	WP5- Enabling Green Growth using water treatment and reuse innovations					
5.1	Database of stakeholders	R	12			
5.2	Report of agribusiness opportunities	R	24			
5.3	Position papers on wastewater topics	R	48			
WP6-Di	ssemination and technology exchange					
6.1	Internal report on customer / entrepreneur demands and technological offer	R	12			
6.2	Webpage and Public Dissemination material	R	6,12, 24, 36, 42			
6.3	Report on training course including online curricula	R	36			
WP7-Ma	anagement & Coordination					
7.1	First year annual report to DBT	R	12			
7.2	Second year annual report to DBT R		24			
7.3	Third year annual report to DBT R 36		36			
7.4	Fourth year annual report to DBT	R	48			

Similarity in Proposed Modules of Europe and India



Management Structure of the **European and Indian WATER4CROPS**

Budget Proposed

Organisation	Year1	Year2	Year3	Year4	Total
ICRISAT	511.37	321.12	306.12	310.62	1449.23
TERI	206.81	53.81	55.18	55.18	370.98
AUUP	69.40	60.40	35.40	35.40	200.60
UASD	65.01	55.56	52.85	52.85	226.27
MSSRF	182.55	98.99	94.27	92.57	468.38
NEERI	338.20	218.20	112.24	88.74	757.38
JISL	142.81	58.66	57.46	58.66	317.59
EIRC	37.36	35.56	35.56	36.16	144.64
SABM	49.28	36.29	35.09	36.29	156.95
UASB	29.46	15.66	14.81	14.81	74.74
Total	1632.25	954.25	798.98	781.28	4166.76

Grey to Green Revolution by Greening the Drylands

With your Help and Support, We can Make a Difference!

Consortium Partners

The Ugar Sugar Works Ltd.

Thank You

