

Enzyme supplemented membrane bioreactor (EnMBR) for degradation of recalcitrant compounds in industrial wastewater (DST/TMC/2K11/342)

S Basu¹, N Singh¹, M Balakrishnan¹, R Bilad², I Vankelecom², R Garcia-Valls³

¹ TERI, India, ² KU Leuven, Belgium ³ CTQC, Spain

This event is co-financed by the European Commission through the involvement of several projects.

A joint event organizated by:

Participating Institutes

The Energy and Resources Institute (TERI), New Delhi, India (Indian Project Coordinator)

KULeuven (KUL), Leuven, Belgium (EU Project Coordinator)

Centre Tecnologic de la Quimica de Catalunya (CTQC), Tarragona, Spain

Background

- Recalcitrant compounds in industrial wastewater
 - difficult to degrade in conventional biological treatment
 - additional enzymatic / chemical treatment required
- Membrane applications in wastewater treatment
 - membrane fouling unavoidable
 - suitable cleaning strategies required
- Enzymatic treatment
 - applicable to recalcitrants degradation and membrane cleaning
 - versatile and environment-friendly
 - enzyme stability and appropriate reactor configuration required

Advantages of immobilized enzyme

- Enzyme can be reused
- Enhances operational stability

Characteristics	Adsorption	Covalent binding	Entrapment	Membrane confinement	
Preparation	Simple	Difficult	Difficult	Simple	
Cost	Low	High	Moderate	High	
Binding force	Variable	Strong	Weak	Strong	
Leakage	Yes	No	Yes	No	
Applicability	Wide	Selective	Wide	Very wide	
Running problems	High	Low	High	High	
Microbial protection	No	No	Yes	Yes	

http://www.lsbu.ac.uk/water/enztech/immethod.html

Immobilization methods

- a. Adsorption
- b. Covalent linkage
- c. Enzyme entrapment
- d. Enzyme encapsulation

This event is co-financed by the European Commission through the involvement of several projects.

Aerobic biological wastewater treatment

Activated Sludge Process (ASP)

- Variable effluent quality
- Sludge settling problems
- Large footprint

Membrane Bioreactor (MBR)

- Consistently high effluent quality
- HRT-SRT decoupled
- Smaller footprint
- Lower excess sludge production

This event is co-financed by the European Commission through the involvement of several projects.

Membrane fouling

Fouling:

- Bio
- Organic
- Inorganic

Fouling:

- Internal
- Pore blocking
- Cake layer

This event is co-financed by the European Commission through the involvement of several projects.

Objective

Incorporate enzymatic degradation in MBR

- (i) Enzyme immobilization on suitable media
- (ii) Testing of immobilized enzyme in MBRs
- (iii) Long-term performance evaluation

Enzyme-substrate combinations

Application	Substrate	Enzyme
Wastewater treatment (pulping)	Lignin	Laccase, Mn-peroxidase (from white rot fungi)
Wastewater treatment (molasses distilleries)	Melanoidins	Laccase, Mn-peroxidase (from white rot fungi)
Membrane cleaning (various applications)	Fats, proteins	Lipase, Protease
Industrial wastewater	Chlorophenols	Chloroperoxidase

This event is co-financed by the European Commission through the involvement of several projects.

Enzymatic degradation

Aromatic ring cleavage of lignin and its intermediates by Laccase

Kawai et al., 1999, FEBS Letters

Dhillon et al., 2012, J Agr Food Chem

This event is co-financed by the European Commission through the involvement of several projects.

Synthesis of azide functionalised lipase

Synthesis of polymer supported lipase

This event is co-financed by the European Commission through the involvement of several projects.

Polysulfone supported chloroperoxidase

This event is co-financed by the European Commission through the involvement of several projects.

A joint event organizated by:

Silica supported lacasse

Step 1

Ceramic/porous material functionalization with alkyl-amino groups and polymeric membranes by acid treatment

Step 2

Activation by treatment with glutaraldehyde

Step 3

Enzyme attachment

Enzymatic immobilized membrane/material

Adapted from Silva et al., Enzyme Microb Tech. 2007, and Rios et al., J Membrane Sci 2004

This event is co-financed by the European Commission through the involvement of several projects.

Membranes

polymeric

ceramic

Membrane module

SEM of membrane surface

This event is co-financed by the European Commission through the involvement of several projects.

A joint event organizated by:

MBR configurations

Supports with immobilized enzymes

Supports:

- Porous materials
- Supermagnetic ironoxide nanoparticles
- Polymeric and ceramic membranes

This event is co-financed by the European Commission through the involvement of several projects.

Insitu enzymatic cleaning: concept

This event is co-financed by the European Commission through the involvement of several projects.

A joint event organizated by:

Example: Insitu enzyme immobilization

Membranes with magnetized nano particle

- Nano particle para magnetic
- Magnetized nano particle
- Enzyme immobilized

Mechanism

Magnet ON

- 1. Magnetic properties activated
- 2. Particle form aggregation
- 3. Particle aggregate is attracted to the membrane surface

Magnet OFF

- 1. Magnetic properties deactivated
- 2. Particle disperse to bulk solution
- Particle in membrane surface disperse to bulk

This event is co-financed by the European Commission through the involvement of several projects.

Hosted by National Geophysical Research Institute (NGIR - CSIR).

EU-India STI

Cooperation Days

High throughput MBR (HT-MBR): Screening

HT-MBR

- 20 parallel modules
- Individual air flow regulator
- Minimize dead-zone
- Removable module holder
- Cast and test frame

This event is co-financed by the European Commission through the involvement of several projects.

Outcome

- Process intensification using enzymatic degradation in conventional MBR operation
- Novel reactor configurations for rapid screening and fouling control
- Procedures for enzyme immobilization

Thank you for your attention

This event is co-financed by the European Commission through the involvement of several projects.

